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Abstract——Almost 25 years after the first report
that glutamate can activate receptors coupled to het-
erotrimeric G-proteins, tremendous progress has been
made in the field of metabotropic glutamate receptors.
Now, eight members of this family of glutamate recep-
tors, encoded by eight different genes that share dis-
tinctive structural features have been identified. The
first cloned receptor, the metabotropic glutamate
(mGlu) receptor mGlu1 has probably been the most
extensively studied mGlu receptor, and in many re-
spects it represents a prototypical subtype for this
family of receptors. Its biochemical, anatomical, phys-
iological, and pharmacological characteristics have
been intensely investigated. Together with subtype 5,
mGlu1 receptors constitute a subgroup of receptors
that couple to phospholipase C and mobilize Ca2�

from intracellular stores. Several alternatively spliced
variants of mGlu1 receptors, which differ primarily in
the length of their C-terminal domain and anatomical
localization, have been reported. Use of a number of
genetic approaches and the recent development of se-
lective antagonists have provided a means for clarify-
ing the role played by this receptor in a number of
neuronal systems. In this article we discuss recent
advancements in the pharmacology and concepts
about the intracellular transduction and pathophysi-
ological role of mGlu1 receptors and review earlier
data in view of these novel findings. The impact that
this new and better understanding of the specific role
of these receptors may have on novel treatment strat-
egies for a variety of neurological and psychiatric dis-
orders is considered.

I. Introduction

The ability of the neurotransmitter glutamate to acti-
vate receptors coupled to heterotrimeric G-proteins was
demonstrated in the mid-1980s by the evoked formation
of inositol phosphates in cultured striatal neurons and
brain slices (Sladeczek et al., 1985, 1988; Nicoletti et al.,
1986b,c, 1987; Akiyama et al., 1987). The term metabo-
tropic glutamate receptors (mGluRs; now mGlu2 recep-

tors according to the International Union of Pharmacol-
ogy classification) was first introduced by Sugiyama et
al. (1987) because of their coupling to G-proteins.

The earliest functional role described for these recep-
tors came from Kano and Kato (1987), who demon-
strated that a long-term modification of synaptic trans-
mission efficacy in the cerebellar cortex, known as long-
term depression (LTD), was selectively dependent on the
activation of mGlu receptors present on Purkinje cell
(PC) dendrites.

The recognition that brain mRNA could be used to
express and measure metabotropic responses to gluta-
mate in Xenopus laevis oocytes was instrumental for the
cloning of mGlu receptors. In 1991, two independent
laboratories (Houamed et al., 1991; Masu et al., 1991)
cloned the first mGlu receptor, named mGlu1 (mGluR1
or GluGR in the original papers). Since then, eight dif-
ferent genes encoding for mGlu receptors have been
identified (Abe et al., 1992; Tanabe et al., 1992; Naka-
jima et al., 1993; Okamoto et al., 1994; Saugstad et al.,

2 Abbreviations: 3,5-DHPG, 3,5-dyhydroxyphenylglycine; 3-MA-
TIDA, derivative of aminothiophene dicarboxylic acid; 3-NP, 3-nitropro-
pionic acid; 4CPG 4-carboxyphenylglycine; 5-HT, 5-hydroxytryptamine,
serotonin; A-841720, 9-dimethylamino-3-(N-hexamethyleneiminyl)-3H-
5-thia-1,3,6-triazafluoren-4-one; AIDA, (RS)-1-aminoindan-1,5-dicar-
boxylic acid; AMPA �-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid; AP3 2-amino-3-phosphonopropionic acid; APDC, 2R,4R-amino-
piperidindicarboxylic acid; BAY 36-7620, (3aS,6aS)-6a-naphtalan-2-
ylmethyl-5-methyliden-hexahydro-cyclopenta[c]furan-1-one; bp, base
pair(s); CaR, Ca2�-sensing receptor; CB1, cannabinoid receptor 1;
CF, climbing fibers; CHO, Chinese hamster ovary; CPCCOEt 7-(hy-
droxyimino)-cyclopropan[b]chromen-1a-carboxylate ethylester; CRD,
cysteine-rich domain; DA, dopamine; DAergic, dopaminergic; DAG,
diacylglycerol, IP3, inositol triphosphate; EM-TBPC, 1-ethyl-2-methyl-
6-oxo-4-(1,2,4,5-tetrahydro-benzo[d]azepin-3-yl)-1,6-dihydro-pyrimi-
dine-5-carbonitrile; EPSC, excitatory postsynaptic current, RyR,
ryanodine receptor; ERK, extracellular signal-regulated kinases;
GPCR, G-protein coupled receptor; GRK, G-protein-coupled recep-
tor kinase; GW398171X, 3-methyl pyrrole-2,4-dicarboxylic acid
2-propyl ester 4-(1,2,2-trimethyl-propyl) ester; R214127, 1-(3,4-dihy-
dro-2H-pyrano[2,3-b]quinolin-7-yl)-2-phenyl-1-ethanone; IPSC, in-
hibitory postsynaptic current; IS, interneuron selective interneuron;
JNJ16259865, 3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl(cis-4-me-
thoxycyclohexyl)-methanone; KA, kainic acid; kb, kilobase(s); KO,
knockout; LBD, ligand binding domain; LTD, long-term depression;
LTP, long-term potentiation; LY367366, �-thioxanthyl-9-methylana-
logue of S-4-CPG; LY367385, (�)-2-methyl-4-carboxyphenylglycine;
MAPK, mitogen-activated protein kinases; MCPG, �-methyl-4-car-
boxyphenylglycine; mGlu, metabotropic glutamate; NMDA, N-meth-
yl-D-aspartic acid; NPS 2390, 2-quinoxaline-carboxamide-N-ada-

mantan-1-yl; NPS 2407, quinoxaline-2-carboxylic acid (1,1-dimethyl-
2-phenyethyl)amide; NPS 3018, 2-quinoxaline ester; nt, nucleotides;
O-Bi, oriens-bistratified; O-LM, oriens-lacunosum moleculare; PC,
Purkinje cell; PF, parallel fiber; PI, polyphosphoinositide; PI3K,
phosphatidylinositol 3-kinase; PKC, protein kinase C, PSD, postsyn-
aptic density; PL, phospholipase; PPI, prepulse inhibition; PTX, per-
tussis toxin; RGS, regulators of G-protein signaling; Ro 01-6128,
ethyl diphenylacetylcarbamate; Ro 67-4853, butyl (9H-xanthene-9-
carbonyl)carbamate; Ro 67-7476, (S)-2-(4-fluorophenyl)-1-(toluene-4-
sulfonyl)pyrrolidine; SCA1, spinocerebellar ataxia type 1; SCG, supe-
rior cervical ganglion; Siah, member of the mammalian seven in
absentia homologs; SNc, substantia nigra pars compacta; SNr, sub-
stantia nigra pars reticulata; TMD, transmembrane domain; TRP,
transient receptor potential; TRPC, TRP channel; UBC, unipolar
brush cells; VFTM, Venus flytrap module; VSCC, voltage-sensitive
calcium channel; YM-202074, N-cyclohexyl-6-N-methylthiazolo[3,2-
a]benzimidazole-2-carboxamide.
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1994; Duvoisin et al., 1995). Nakanishi (1992) proposed
the current classification of mGlu receptor subtypes into
three groups on the basis of their amino acid sequence,
intracellular coupling mechanisms, and relative phar-
macology; this classification is substantiated also by
phylogenetic analyses (Joost and Methner, 2002; Pin et
al., 2003). Group I includes mGlu1 and mGlu5 receptors,
which are coupled to Gq proteins and are selectively
activated by 3,5-dihydroxyphenylglycine (3,5-DHPG),
group II includes mGlu2 and mGlu3 receptors that are
coupled to Gi proteins and are activated by 2R,4R-amin-
opiperidindicarboxylic acid, and group III consists of
mGlu4, mGlu6, mGlu7, and mGlu8 receptors, which are
coupled to Gi proteins in recombinant systems and are
activated by 2-amino-4-phosphonobutyrate.

The generation of mice carrying gene-targeted dele-
tion of mGlu1 receptors (Aiba et al., 1994b; Conquet et
al., 1994) and the development of potent, selective, and
systemically active antagonists has allowed great
progress in the understanding of the physiological and
pathophysiological role of these receptors in many neu-
ronal systems. In addition, the resolution of the three-
dimensional structure of the extracellular N-terminal
domain of mGlu1 receptors, containing the ligand-bind-
ing site (Kunishima et al., 2000), has provided the
ground for the generation of models of receptor activation.

In this review, we have tried to integrate and summa-
rize the current literature related to the structure and
function of mGlu1 receptors and to critically discuss the
existing controversies. In addition, we will comment on
the role of mGlu1 receptors in physiology and pathology,
discussing the pros and cons of the use of mGlu1 recep-
tor ligands in human disorders. We apologize for omis-
sions in our coverage of the existing literature (�2500
papers dealing directly or indirectly with mGlu1 recep-
tors) because of space limitations.

II. Genomic Organization of the Metabotropic
Glutamate 1 Receptor

A. Chromosomal Localization and Organization of the
Metabotropic Glutamate 1 Receptor Gene

The gene encoding for the mGlu1 receptor (locus
name: GRM1 in humans and Grm1 in other species) has
been mapped to chromosome 6q24 in humans (Stephan
et al., 1996; Ganesh et al., 2000), chromosome 1p13 in
rats (Kuramoto et al., 1994), and chromosome 10, band
10a1, in mice (http://www.ncbi.nlm.nih.gov/unigene).

Exon/intron boundaries were determined by compar-
ing cDNA, mRNA, and expressed sequence tags retriev-
able from public databases or present in literature, with
genomic nucleotide sequences (Crepaldi et al., 2007).
The human GRM1 spans �410 kilobase pairs and con-
sists of 10 exons and 9 introns. Exons vary from 85 (exon
IX) to 3724 bp (exon X) in size, whereas intron sizes
range from 149 to 1.3 kilobase pairs (Fig. 1A). Intron/
exon splice junctions conformed to the GT-AG rule of

splice donor/acceptor sites (Burset et al., 2000). Despite
the highly similar genomic structure of Grm1 observed
in humans and rodents (Fig. 1, A and B), some diver-
gences were detected, such as the presence in mouse of
two additional exons between exons I and II (indicated
by Ib and Ic) and the absence in human GRM1 of exon
E55 (Zhu et al., 1999) (see section II.C). Within the
group I mGlu family, comparison of the genomic struc-
tures of GRM1 with GRM5 reveals a high degree of
similarity in terms of exon/intron arrangement, strongly
suggesting that group I mGlu receptors have been gen-
erated by gene duplication from a common ancestor
(Fig. 1D).

On the basis of public cDNA sequences, available ex-
pressed sequence tags and genomic data, we could iden-
tify several putative polyadenylation consensus se-
quences (AATAAA). However, only one of these signals,
located 3707 bp downstream from the 5� of human
GRM1 exon X, is conserved across the mGlu1 genes of
several other species including mouse, rat, and dog (Fig.
1C). Therefore, this site is likely to be the main signal
used to terminate transcription. This consensus se-
quence is located within a �150-bp region highly con-
served among these four species. Northern hybridization
analysis of brain mRNA revealed the existence of tran-
scripts of �7 kb in length in human brain areas
(Stephan et al., 1996). In contrast, two transcripts of �4
and �7 kb were detected in rodent brain (Houamed et
al., 1991; Masu et al., 1991; Kerner et al., 1997; Zhu et
al., 1999). An �6-kb transcript has been reported in
mouse heart (Zhu et al., 1999). These differences can be
explained by considering the two additional polyadenyl-
ation signals present in rodents, located 1236 and 1249
nt downstream from the 5�-end of rat exon X, which
could generate the �4-kb transcript (Fig. 1C). On the
other hand, the polyadenylation signal conserved among
humans, dogs, and rodents, which in the rat is located
3758 nt downstream from the 5�-end of exon X, is likely
to be involved in the generation of the �7-kb transcript.

B. Transcriptional Regulation

Transcriptional regulation of the mGlu1 receptor
gene, both in humans and mice, is driven by at least two
alternative promoters located upstream from exons Ia
and II, with the latter encoding the transcription initi-
ation codon (Crepaldi et al., 2007). According to 5� rapid
amplification of cDNA ends analyses, approximately
70% of mGlu1 transcripts start within exon Ia. Although
at very low levels, transcripts encoding for exons Ib or Ic
are present in mouse. Functional analysis of the pro-
moter region located upstream of exon Ia reveals the
presence of a 57-bp core promoter encompassing �68 to
�11 bp, relative to the first transcription initiation site.
Within this core promoter region, two elements critically
regulate mGlu1 transcription, binding, respectively,
thyroid transcription factor 1 and the CCAAT/enhancer
binding protein �. These proximal elements probably
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represent a transcriptional module, in which the inter-
play of at least these two transcription factors synergis-
tically activates transcription (Crepaldi et al., 2007). It
is not surprising that genes with a complex and highly
restricted expression pattern, such as mGlu1, possess
core promoters with almost unique features and differ-
ent from more common core promoter modules, such as
the TATA/initiator. However, preliminary experiments
performed in embryonic day 18.5 embryos of thyroid
transcription factor 1 KO mice (kindly provided by Dr. R.
DiLauro and Dr. S. Kimura) indicate that expression of
mGlu1 is preserved and suggest a more complex tran-
scriptional regulation of this receptor (F. Ferraguti, per-
sonal communication).

Two silencing elements have a key role in restricting
the expression of mGlu1 to neuronal cells, namely the
neuronal restrictive silencing element, located between
exons Ib and Ic, and the regulatory factor for X-box
element found upstream from exon II (Crepaldi et al.,
2007). Both silencing elements have a strong suppres-
sive role in non-neuronal cells.

C. Alternative Splicing

Several splice variants of mGlu1 have been identified,
and the first cloned isoform was originally named
mGlu1� (Houamed et al., 1991; Masu et al., 1991). Ei-
ther Greek or Latin characters have been used for sub-
sequently identified mGlu1 alternatively spliced iso-
forms, which generated some ambiguity. Moreover, no
clear evidence exists for some of the reported isoforms.
We propose here a nomenclature that limits the use of
Greek characters to the translated transcripts and uses
arabic numbers that follow the Greek character for differ-
ent mRNA forms encoding for the same protein (Fig. 2).

Among the known isoforms, mGlu1� is the longest
isoform, composed of 1199 amino acids in rat (1194
amino acids in human), �590 of which form the extra-
cellular N-terminal domain and �360 of which form the
C-terminal intracellular domain, separated by a hepta-
helical transmembrane domain (7TMD) (Houamed et
al., 1991; Masu et al., 1991).

The isoform mGlu1� (or mGlu1b) is characterized by a
shorter C-terminal domain and derives from two differ-

FIG. 1. Genomic structure of Grm1. A, complete genomic structure of mouse, rat, and human mGlu1 genes. Transcribed regions are indicated by
gray boxes. The size of exons is given in base pairs, whereas the size of introns (in italics) is given in kilobase pairs. B, table indicating the percentage
of identity across mouse, rat, and human exons. The values shown in italics were calculated on the basis of in silico data and not from cloned sequences.
C, putative polyadenylation signals present in exon X of several species. The position of each polyadenylation signal is indicated by a gray bar. The
most 3� polyadenylation signal is conserved across all species and is boxed. D, comparison of the genomic structure between GRM1 and GRM5.
Transcribed regions are indicated by gray boxes.
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ent transcripts, named here mGlu1�1 and mGlu1�2
(previously mGlu1f), generated by alternative splicing.
In particular, mGlu1�1 derives from the insertion of an
85-bp exon (exon IX) downstream from the 7TMD
(Tanabe et al., 1992). This exon codes for an in-frame
stop codon, thus generating a substitution of the last 318
amino acids of mGlu1� with 20 different residues. The
resulting receptor protein is 906 amino acids long with a
shorter intracellular domain. The isoform mGlu1�2 (So-
loviev et al., 1999) is produced by the insertion of the
same 85-bp exon (exon IX) that generates mGlu1�1, plus
the usage of an alternative splice acceptor in exon X that
is located 35 bp downstream from the 5�-end of the exon.

Additional mGlu1 isoforms characterized by a short
C-terminal domain have been described. An isoform
originally named mGlu1d (Laurie et al., 1996) and indi-
cated here as mGlu1� derives from the usage of the same
alternative splice acceptor in exon X as in mGlu1�2. The
consequent frameshift inserts a stop codon 22 amino
acids downstream from the splice site, resulting in a
908-amino acid receptor (Laurie et al., 1996). The ex-
pression of mGlu1� mRNA has been demonstrated in
both humans and rats (Laurie et al., 1996; Mary et al.,
1997; Berthele et al., 1998).

The isoform mGlu1c was isolated from a rat cerebel-
lum cDNA library (Pin et al., 1992) and would derive
from an alternatively spliced exon inserted after the
7TMD, thus producing a further splice variant with a
short C-terminal domain. However, the sequence of
mGlu1c finds no match in the rat Grm1 genomic locus,
suggesting that it derives from a recombination event of
the cDNA library used to isolate this isoform.

A further isoform named mGlu1g (Makoff et al., 1997)
has been cloned from a human cerebellum cDNA library
and would derive from skipping of the splice donor in the
7TMD coding exon (exon VIII); the resulting protein,
because of an in-frame stop codon present 1 bp down-
stream from the skipped splice site, would be composed
of 887 amino acids (Makoff et al., 1997). Despite the
reported expression of this isoform in kidney, Makoff et
al. did not rule out the possibility that the subcloned

mGlu1g transcripts may derive from partially processed
pre-mRNA.

A further splice variant, whose translation would en-
code a potentially secreted protein, has been identified
in mouse and was originally named mGlu1E55 (Zhu et
al., 1999) (here indicated as mGlu1�). It derives from the
insertion between exons III and IV of a 110-nucleotide-
long exon (exon E55), which contains an in-frame stop
codon. The transcript generates a truncated protein of
321 amino acids, containing only part of the extracellu-
lar domain (Zhu et al., 1999). We could confirm the
existence of a region highly homologous to mouse exon
E55 in rats but not in humans.

A novel rat mGlu1 splice variant has been identified
in the papillae vallate (San Gabriel et al., 2005). The
5�-untranslated region of this isoform would comprise
170 bp in the intronic region upstream from exon IV, the
entire exon IV, and 41 nt in exon V. The authors sug-
gested Met410 as the translation start site (San Gabriel
et al., 2005).

III. Structural Features of Metabotropic
Glutamate 1 Receptors

mGlu receptors belong to class 3 of G-protein-coupled
receptors (GPCRs), which also includes the Ca2�-sens-
ing receptor (CaR), class-B GABA (GABAB) receptors,
and taste and pheromone receptors (for review, see Pin
et al., 2003). These receptor molecules are characterized
by a large extracellular ligand-binding domain (LBD),
similar to the Venus flytrap module (VFTM) of bacterial
periplasmic amino acid-binding proteins, a highly hy-
drophobic heptahelical TM, in most cases separated by a
cysteine-rich domain (CRD), and an intracellular C-ter-
minal domain of different length depending on the re-
ceptor subtype (Bhave et al., 2003).

A. The Extracellular Domain and the Agonist
Binding Site

A structural model of the extracellular N-terminal
domain of mGlu1 was proposed on the basis of the weak,

FIG. 2. Schematic drawing of mGlu1 receptor alternative splice variants giving rise to different translated isoforms and substantiated by their
actual detection in tissue. The first column on the right provides the newly proposed classification of mGlu1 receptor splice variants; the second column
provides the former name and the numbers on the right correspond to the length in amino acid (aa) residues. Gray boxes correspond to exonic
translated sequences in each isoform.
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but significant, sequence homology with bacterial
leucine/isoleucine/valine-binding proteins (O’Hara et al.,
1993; Costantino et al., 1999). This model predicts the
folding of the N terminus into two lobules separated by
a cleft, which forms the agonist binding pocket. Agonist
binding critically involves Ser165, Thr188, and Arg78, as
demonstrated by mutation analysis (O’Hara et al., 1993;
Jensen et al., 2000). The exclusive role of the extracel-
lular domain in glutamate binding was confirmed by
functional analysis of chimeric receptors (Takahashi et
al., 1993) and of the soluble extracellular domain (Oka-
moto et al., 1998). Additional evidence indicated that
mGlu1 receptors form homodimers (Romano et al., 1996;
Okamoto et al., 1998; Robbins et al., 1999), with Cys140

forming a disulfide bridge that covalently binds two
mGlu1 receptor monomers (Ray and Hauschild, 2000;
Tsuji et al., 2000). However, mutation of Cys140 into Ala
does not prevent dimer formation and ligand binding,
suggesting that dimerization is also mediated by nonco-
valent interactions (Tsuji et al., 2000). The structure of
the mGlu1 LBD has been determined by X-ray crystal-
lography under different configurations [i.e., in a gluta-
mate-bound form, a two-ligand free form (Kunishima et
al., 2000), a glutamate- and Gd3�-bound form, and an
antagonist-bound form (Tsuchiya et al., 2002)]. This
finding confirmed the model proposed by O’Hara and
colleagues and also provided new insights into the mech-
anisms of receptor activation. The LBD (amino acids
33–522) displays an �/� topology and associates in ho-
modimers, with two globular structures, designated LB1
and LB2, connected by three short loops, to form the
clamshell-like structure known as the Venus flytrap
module (Kunishima et al., 2000). The LB1 domain pro-
vides the dimer interface, characterized by a core of
hydrophobic residues. Cys140, which contributes to
dimer formation is present within a disordered segment
of LB1 (Kunishima et al., 2000). On the basis of the
solved structure and mutagenesis, four residues (Thr188,
Asp208, Tyr236, and Asp318) seem to be essential for
agonist binding, whereas Tyr74, Arg78, and Gly293 are
important for agonist selectivity because their substitu-
tion reduces the response to glutamate but not to quis-
qualate (Sato et al., 2003). Mutation of Ile120, located at
the dimer interface, abolishes the response to orthosteric
agonists, suggesting that the dimer interface, which un-
dergoes a substantial structural rearrangement upon
glutamate binding, plays a crucial role in receptor acti-
vation (Sato et al., 2003).

As mentioned, homodimerization of mGlu1 receptors
(and mGlu receptors in general) has been demonstrated
by different approaches (Romano et al., 1996; Okamoto
et al., 1998; Kunishima et al., 2000; Ray and Hauschild,
2000; Tsuji et al., 2000) and seems to take place within
the endoplasmic reticulum (Robbins et al., 1999; Selkirk
et al., 2002). The N-terminal domain of mGlu1 receptors
seems sufficient to allow dimerization because the solu-
ble extracellular domain can form homodimers in heter-

ologous expression systems (Okamoto et al., 1998; Rob-
bins et al., 1999; Selkirk et al., 2002).

It has been shown that extracellular cations, such as
Ca2� and Gd3�, activate mGlu1 receptors (Kubokawa et
al., 1996; Kubo et al., 1998; Saunders et al., 1998;
Tateyama et al., 2004). Mutational analysis identified
Ser166 as a key residue in the interaction with extracel-
lular Ca2� ions (Kubo et al., 1998).

Four consensus sequences [NX(T/S)] for N-glycosyla-
tion are present within the N-terminal domain (Asn98,
Asn223, Asn397, and Asn515), and one (Asn747) is present
within the second extracellular loop (e2) of mGlu1 recep-
tors (Masu et al., 1991). Of these asparagine residues,
Asn98 and Asn223 were found to be glycosylated in the
soluble LBD derived from Sf9 insect cells (Kunishima et
al., 2000). However, all four N-glycosylation consensus
sequences located within the extracellular domain of the
mGlu1 receptors seem to be relevant for receptor func-
tion (Selkirk et al., 2002).

The presence of a signal peptide for membrane target-
ing was hypothesized after the uncovering of the pri-
mary structure of mGlu1 receptors. The first N-terminal
20 residues of the mGlu1 receptor show features typical
of a signal peptide, such as hydrophobicity and the pres-
ence of consecutive leucine residues (Masu et al., 1991).
The soluble extracellular domain of the mGlu1 receptor
expressed in recombinant cells was shown to lack the
first 32 residues, suggesting that this region indeed cor-
responds to the signal peptide (Tsuji et al., 2000; Selkirk
et al., 2002).

B. The Cysteine-Rich Domain

A cluster of nine cysteine residues, conserved among
all mGlu receptors, is located within the C-terminal
region of the extracellular domain, similarly to the cys-
teine-rich regions characteristic of tyrosine kinase re-
ceptors (O’Hara et al., 1993). The soluble LBD of mGlu1
receptors lacking the CRD shows much lower expression
and ligand binding than the full extracellular domain
(Okamoto et al., 1998). The role of the CRD has been
partially characterized in the CaR, which shares several
structural features with mGlu receptors. Mutagenesis of
any of the nine cysteines in the CaR causes loss of
receptor function, because of a misfolding or incomplete
processing of the receptor (Fan et al., 1998). Functional
analysis of chimeric receptors suggests that the CRD is
involved in the communication between the VFTM and
the 7TMD (Hu et al., 2000).

C. The Heptahelical Transmembrane Domain

The heptahelical transmembrane domain and partic-
ularly its intracellular loops plays a major role in cou-
pling mGlu1 receptors to G-proteins. For class 1 GPCRs,
G-protein coupling is mediated by the third intracellular
loop (i3), which in mGlu receptors is relatively short and
highly conserved among different subtypes. In contrast,
loop i2 is the longest and most variable and has there-
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fore been implicated in G-protein coupling and selectiv-
ity (Pin et al., 1994). The use of mGlu1/mGlu3 chimeric
receptors has confirmed the primary role of loop i2 in
G-protein coupling, whereas loops i1 and i3 and the
C-terminal tail are not required for but facilitate
G-protein coupling (Pin et al., 1994; Gomeza et al.,
1996). Several key residues in loops i2 and i3 seem to be
important for G-protein coupling and selectivity (Fran-
cesconi and Duvoisin, 1998).

A binding site for noncompetitive antagonists has
been identified within the 7TMD (Litschig et al., 1999;
Carroll et al., 2001; Malherbe et al., 2003). Analysis of
chimeric receptors and of amino acid point mutations
identified Thr815 and Ala818, located in TM7, as essential
residues for the binding of the noncompetitive antagonist,
7-(hydroxyimino)-cyclopropan[b]chromen-1a-carboxylate
ethyl ester (CPCCOEt) (Litschig et al., 1999), and TM7 as
an essential domain for the action of the inverse agonist,
BAY 36-7620 (Carroll et al., 2001). Mutational analysis
has also shown that residues within the 7TMD of mGlu1
receptors are critical for the binding and the selectivity
of positive allosteric modulators (Knoflach et al., 2001a).
A recent model of the structure of rat mGlu1 7TMD
proposes the existence of a binding pocket for the noncom-
petitive antagonist 1-ethyl-2-methyl-6-oxo-4-(1,2,4,5-tetra-
hydro-benzo[d]azepin-3-yl)-1,6-dihydro-pyrimidine-5-car-
bonitrile (EM-TBPC), (Malherbe et al., 2003). Several
residues in TM3, TM5, TM6, TM7, and extracellular loop 2
have also been identified by mutagenesis as determinants
for the binding of EM-TBPC (Malherbe et al., 2003).

D. Possible Mechanisms of Metabotropic Glutamate 1
Receptor Activation

The characterization of the unbound and agonist/an-
tagonist-bound conformations of the mGlu1 receptor
LBD (Kunishima et al., 2000; Tsuchiya et al., 2002), as
well as of the binding sites for allosteric modulators and
metal ions (Litschig et al., 1999; Kunishima et al., 2000;
Carroll et al., 2001; Knoflach et al., 2001a; Tsuchiya et
al., 2002; Sato et al., 2003), has allowed the development
of models of receptor activation and has shed light on the
mechanisms mediating the intramolecular transduction
between the extra- and intracytoplasmic domains of
mGlu1 receptors (Jensen et al., 2002; Jingami et al.,
2003; Parmentier et al., 2002).

Several conformations of the dimeric LBD can be de-
fined on the basis of two states of each monomer (open/
closed) and of two states of the dimer, resting (R) and
active (A). Open/closed states are defined by the relative
position of LB1 and LB2 of the monomer, which can be
brought in closer proximity through a rotation around
an axis passing across the three connecting loops (Ku-
nishima et al., 2000; Jingami et al., 2003). The R and A
states are defined by the relative spatial orientation of
the two LBDs within the dimer. The unbound form has
been crystallized in both open/closedA state (with only
one of the two monomers in the close state) and open/

openR state (Kunishima et al., 2000). The glutamate-
bound form is in the open/closedA state, with two gluta-
mate molecules bound to each monomer. This finding
suggests that the A state corresponds to the active con-
formation of the receptor. Glutamate interacts only with
LB1 in the open state and with both LB1 and LB2 in the
closed state. The existence of a dynamic equilibrium
between the open and the closed states, shifted by glu-
tamate toward the closed state through the interaction
with the residues of the binding pocket, has been hy-
pothesized. The structural perturbation consequent to
ligand binding could thus induce a coordinated reloca-
tion of the dimer interface, stabilizing the A state (Ku-
nishima et al., 2000). Modeling of the open/openA state
that simulates an active unbound receptor suggests that
this conformation is energetically unfavorable. A strong
electrostatic repulsion is present at the interface of LB2
domains, which in this conformation are in close prox-
imity (Tsuchiya et al., 2002). The LBD bound to the
competitive antagonist �-methyl-4-carboxyphenylgly-
cine (MCPG) has been shown to be in open/openR state,
supporting the view that the R structure corresponds to
the resting state of the receptor (Tsuchiya et al., 2002).
Both LB1 and LB2 interact with MCPG in the binding
pocket, and the steric hindrance created by the antago-
nist is likely to stabilize the open state. The structure of
the LBD complexed with glutamate and Gd3� has re-
vealed a closed/closedA conformation (Tsuchiya et al.,
2002). Molecular modeling suggested that this structure
is energetically unfavorable, because of the electrostatic
repulsion exerted by negatively charged residues, which
come in close contact at the LB2 interface. This repul-
sion is relieved by the coordination with Gd3� (Tsuchiya
et al., 2002). Accordingly, it has been shown that Gd3�

can both activate mGlu1 receptors and increase the ef-
fect of glutamate on mGlu1 receptor activation (Abe et
al., 2003b). Mutation of Glu238 suppresses the modula-
tion of mGlu1 receptors by Gd3� (Abe et al., 2003b).

The observation that glutamate is bound to the VFTM
in open/closedA and in closed/closedA states raised the
question of whether both conformations correspond to
an active receptor. An answer to this question came from
the work of Kniazeff et al. (2004), in which they ele-
gantly showed that the closure of one VFTM per dimer is
sufficient for a partial activation of the receptor,
whereas full receptor activation requires the closure of
both VFTMs. Accordingly, binding of glutamate to only
one binding site within mGlu1� receptor dimers is not
sufficient to achieve full receptor activation but requires
binding to both subunits (Kammermeier and Yun, 2005).
Interestingly, the dimeric LBD has been shown to dis-
play a strong negative cooperativity of glutamate bind-
ing between each subunit, which could have the func-
tional effect of extending the concentration range at
which the receptor can work or increasing the sensitivity
to low ligand concentrations (Suzuki et al., 2004). Recent
studies indicate that full activation of mGlu1 receptors
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requires only the activation of one of the two 7TMDs of
the dimeric receptor (Hlavackova et al., 2005).

Fluorescence resonance energy transfer analysis
showed that agonist binding causes a spatial rearrange-
ment of the mGlu1� receptor homodimer by modifying
the relative orientation of the monomers (Tateyama et
al., 2004). The spacing between intracellular loops i2 is
reduced in response to agonist stimulation, and the non-
competitive antagonist CPCCOEt increases the loop
spacing even in the absence of an agonist (Tateyama et
al., 2004). A rearrangement, similar to that caused by
glutamate binding, is detected also in response to di- and
trivalent cations. This finding supports the controversial
hypothesis that cations can independently activate
mGlu1 receptors (Kubo et al., 1998; Nash et al., 2001;
Tateyama et al., 2004). Finally, no intra- or intermolec-
ular rearrangement has been demonstrated for the
C-terminal tail, although this particular domain plays
an important role in receptor signaling (Tateyama et al.,
2004).

An interesting model describing the functioning of
class 3 GPCRs has been proposed by Parmentier et al.
(2002). According to this model, both the LBD and the
7TMD oscillate between an active and a resting state in
a dynamic equilibrium. Agonist binding to the LBD
shifts the equilibrium of the 7TMD toward the active
state. However, in the particular case of the mGlu1
receptor, it has been suggested that the coupling of LBD
and 7TMD is “loose”; i.e., activation of the two domains
is relatively independent. This independence may con-
tribute to explaining the constitutive activity observed
for the mGlu1� receptor (Joly et al., 1995; Prézeau et al.,
1996; Mary et al., 1997), which would reflect the activa-
tion of the 7TMD in the absence of an agonist (Parmen-
tier et al., 2002). This model also explains why compet-
itive antagonists, which bind to the extracellular
domain, do not block the constitutive activity of mGlu1�
receptors. Conversely, noncompetitive antagonists are
supposed to act either by shifting the 7TMD toward the
resting state or by decreasing the coupling efficiency
between LBD and 7TMD (Parmentier et al., 2002). It
would be of great interest to clarify the role of the CRD
in the communication between LBD and 7TMD, bearing
in mind that these two domains are “tightly” coupled in
GABAB receptors, which lack the CRD (Parmentier et
al., 2002).

E. The Carboxyl-Terminal Domain

Within the intracellular tail of mGlu1 receptors, the
first helix downstream from the 7TMD shows an amphi-
pathic profile, similar to that of the corresponding helix
(H8) of class 1 GPCRs (Pin et al., 2003). These helices
have been shown to facilitate G-protein coupling (Pin et
al., 1994; Gomeza et al., 1996).

Analysis of a series of truncated and chimeric recep-
tors allowed the identification of four amino acid resi-
dues in the C-terminal domain (RRKK) that are respon-

sible for the lack of agonist-independent activity and
lower responses to agonist stimulation characteristic of
the short isoforms of the mGlu1 receptor (Mary et al.,
1998; see also section VI.A). The RRKK signal is present
in all mGlu1 splice variants, but the long tail of the
mGlu1� receptor prevents the action of these four amino
acids (Mary et al., 1998). Moreover, the RRKK stretch
may also have a role in mGlu1 receptor trafficking by
acting as a signal for retention in the endoplasmic retic-
ulum (Chan et al., 2001). Residues 975 to 1088 of the
intracellular tail of the mGlu1� receptors allow the ef-
fect of RRKK on receptor trafficking to be overcome
(Chan et al., 2001). The RRKK signal would also deter-
mine the axonal/apical targeting of mGlu1 receptors in
Madin-Darby canine kidney epithelial cells and in chick
retina neurons (Francesconi and Duvoisin, 2002). Its
effect is suppressed in the mGlu1� isoform, which is
targeted to the dendritic/basolateral compartment by its
“long” intracellular domain (Francesconi and Duvoisin,
2002).

The primary sequence of mGlu1� possesses several
putative Ser/Thr phosphorylation sites within the C ter-
minus (Masu et al., 1991). These sites, which include
Thr695, are phosphorylated by protein kinase C (PKC)
and have a role in receptor desensitization (Alaluf et al.,
1995; Francesconi and Duvoisin, 2000; see also section
IV.D).

The C-terminal domain of mGlu1 receptors physically
interacts with a variety of cytoskeletal, scaffolding, and
signaling proteins, as well as with integral membrane
receptors (see also section VI.C). The intracellular tail of
the mGlu1� but not the mGlu1� and mGlu1� receptors
incorporates a PPSPFR stretch, which binds to Homer
proteins (Tu et al., 1998). A second consensus sequence
that binds to scaffolding proteins, namely a (PSD-95)/
discs-large/ZO-1 (PDZ) domain binding sequence (resi-
dues SSSL) is present in the C terminus of the mGlu1�
receptor (Tu et al., 1999). Two binding sites for calmod-
ulin have been identified in the C terminus of mGlu1�
receptors (Ishikawa et al., 1999). Several serine/threo-
nine residues within these sites are targets for PKC
phosphorylation, which could be then suppressed by the
interaction with calmodulin (Minakami et al., 1997).

In silico analysis identified two sequences that may
serve as a signal for proteolysis. These sequences are
named PEST and overlap the PPSFR consensus se-
quence for Homer binding (Soloviev, 2000).

IV. Intracellular Coupling of Metabotropic
Glutamate 1 receptors

Activation of mGlu1 receptors stimulates polyphos-
phoinositide (PI) hydrolysis (Fig. 3), as shown by mea-
surements of inositol phosphate formation and/or intra-
cellular Ca2� release in heterologous expression systems
(Houamed et al., 1991; Masu et al., 1991; Aramori and
Nakanishi, 1992; Pin et al., 1992; Pickering et al., 1993;
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Ferraguti et al., 1994; Hermans et al., 1998) or in cul-
tured cerebellar granule cells (Nicoletti et al., 1986b,
1987).

A. G-Protein Coupling

mGlu1 receptors are primarily coupled to proteins of
the Gq family, because receptor responses are insensi-
tive or only partially sensitive to inhibition by pertussis
toxin (PTX) (Houamed et al., 1991; Masu et al., 1991;
Aramori and Nakanishi, 1992; Pin et al., 1992; Pickering
et al., 1993; Thomsen et al., 1993; Thomsen, 1996;
Hiltscher et al., 1998; Hartmann et al., 2004). Mice with
genetic deletion of the G�q protein showed a complete
loss of LTD in cerebellar PCs, a particular form of syn-
aptic plasticity that is mediated by the activation of
mGlu1 receptors (Hartmann et al., 2004).

The role of G-proteins of the Gi/o family in mGlu1
receptor signaling is unclear. In some systems, stimula-
tion of PI hydrolysis mediated by mGlu1 receptors is
partially sensitive to PTX and may therefore involve
receptor coupling with a Go (Offermanns, 2003). Cou-
pling of mGlu1 receptors to Gi protein is unlikely be-
cause receptor activation does not inhibit adenylyl cy-
clase activity (Aramori and Nakanishi, 1992; Tanabe et
al., 1992; Kasahara and Sugiyama, 1994; but see Akam
et al., 1997). Pretreatment with PTX enhances PI hydro-
lysis in BHK cells expressing mGlu1� receptors, sug-
gesting an inhibitory role of Gi/o proteins on mGlu1-
receptor stimulated phospholipase (PL) C activity
(Carruthers et al., 1997; Hermans et al., 2000; Selkirk et
al., 2001). The functional significance of this intriguing
finding is unclear at present.

In several systems, activation of mGlu1 receptors en-
hanced cAMP formation, a finding that suggests a cou-

pling of the receptor with Gs proteins (Aramori and
Nakanishi, 1992; Pickering et al., 1993; Joly et al., 1995;
Thomsen, 1996; but see Hiltscher et al., 1998). Although
stimulation of cAMP formation might be secondary to
other transduction pathways, the fact that there are
residues within the i2 loop of mGlu1 receptors that are
critical for receptor coupling to adenylate cyclase should
be highlighted (Francesconi and Duvoisin, 1998).

Differences in the selectivity and/or efficiency of
G-protein coupling have been reported for the splice
variants of mGlu1 receptors. The “short” mGlu1� and
mGlu1� receptor isoforms are coupled to PI hydrolysis
less efficiently than the mGlu1� receptor (Prézeau et al.,
1996; Mary et al., 1997) and require higher concentra-
tion of agonist (Flor et al., 1996). However, this coupling
applies to rat mGlu1 receptors, whereas human mGlu1�
and -� receptors seem to be coupled to PI hydrolysis with
equal efficacy (Stephan et al., 1996). The mGlu1� recep-
tor but not the mGlu1� or mGlu1� receptor is constitu-
tively active in stimulating PI hydrolysis; i.e., it is active
in the absence of an orthosteric agonist, in transfected
LLC-PK1, HEK-293, or BHK cells (Joly et al., 1995;
Prézeau et al., 1996; Carruthers et al., 1997; Mary et al.,
1997; Hiltscher et al., 1998). This constitutive activity is
not prevented by orthosteric mGlu1 receptor antago-
nists, which reduce the response to applied glutamate,
but not the basal activity; hence, this activity is not
triggered by endogenous glutamate present in the cul-
ture medium (Prézeau et al., 1996). In contrast, experi-
ments performed in Chinese hamster ovary (CHO) cells
suggest that the endogenous glutamate released by
these cells is ultimately responsible for the “constitu-
tive” activity of mGlu1� receptors (Hermans et al.,
1998).

FIG. 3. Schematic diagram of the main transduction pathways activated by mGlu1 receptors. Upon stimulation by glutamate to the Venus flytrap
module, mGlu1 receptors (which generally homodimerize) can couple to multiple signaling pathways through different G-proteins. The C-terminal
domain of mGlu1 receptors interacts with Homer proteins, which mediate the association with IP3 receptors in the endoplasmic reticulum. PIP2,
phosphatidylinositol bisphosphate; AC, adenylate cyclase.
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Stimulation of PI hydrolysis mediated by mGlu1� re-
ceptors in BHK cells is completely insensitive to PTX,
indicating that receptor coupling to PLC is mediated by
Gq/11 but not Go proteins (Pickering et al., 1993). Acti-
vation of mGlu1� receptors does not stimulate cAMP
formation in LLC-PK1 cells (Joly et al., 1995), whereas it
can stimulate cAMP formation in BHK cells but less
efficiently than the activation of mGlu1� receptors
(Pickering et al., 1993). Thus, mGlu1� and mGlu1� re-
ceptors seem to be differentially coupled to Gs proteins.

Group I mGlu receptor signaling is regulated by at
least two members of the regulators of G-protein signal-
ing (RGS) family. Proteins of the RGS family accelerate
the GTP turnover of G� subunits, thereby reducing the
interaction of G� with effector proteins (for review, see
Dohlman and Thorner, 1997). In transfected X. laevis
oocytes, RGS4 inhibits the Ca2�-dependent Cl� currents
mediated by mGlu1� or mGlu5a receptors (Saugstad et
al., 1998). Signaling of mGlu1� receptors can also be
regulated by RGS2 (see section IV.B) (Kammermeier
and Ikeda, 1999). More recently, the existence of com-
plexes comprising mGlu1� and RGS3 has been reported
(Calò et al., 2005).

B. Signal Transduction Mechanisms

The role of PLC� in mGlu1 receptor signaling has
been firmly established. This enzyme cleaves phospha-
tidylinositol-4,5-bisphosphate into inositol-1,4,5-trisphos-
phate and diacylglycerol (DAG), which release Ca2�

from intracellular stores and activates PKC, respec-
tively (Fig. 3). Analysis of PLC�4 knockout mice re-
vealed that this PLC isoform transduces the signal trig-
gered by mGlu1 receptors in PCs (Miyata et al., 2001).
LTD at parallel fiber-PC synapses, which is mediated by
mGlu1 receptors (Aiba et al., 1994b; Ichise et al., 2000),
is completely abolished in mice lacking PLC�4 (Miyata
et al., 2001). Expression of PLC�4 and mGlu1 receptors
is overlapping throughout the central nervous system,
and PLC�4 can be detected in complexes formed by
mGlu1� and type-1 IP3 receptors (Nakamura et al.,
2004). In addition, a mGlu1 receptor-PLC�4 cascade in
the thalamus was shown to play a key role in the pro-
cessing of inflammatory pain (Miyata et al., 2003).

Mobilization of intracellular Ca2� in response to
mGlu1 receptor activation occurs through both the IP3
receptor and the ryanodine receptor present on the sur-
face of the endoplasmic reticulum (del Río et al., 1999;
Fagni et al., 2000). It should be highlighted that activa-
tion of mGlu1 receptors can also increase intracellular
Ca2� concentrations through the opening of voltage-
sensitive calcium channels (VSCCs) and nonselective
cation channels (see later in this section).

Activation of mGlu1 receptors also stimulates the re-
lease of arachidonic acid (Aramori and Nakanishi, 1992;
Thomsen, 1996), which may originate either from mem-
brane phospholipids or DAG (by the action of phospho-
lipase A2 and DAG lipase, respectively). In CHO cells,

arachidonic acid release mediated by mGlu1 receptors
is inhibited by PTX and enhanced by PKC activation
(Aramori and Nakanishi, 1992). mGlu1� receptors ex-
pressed in CHO cells are also coupled to PLD through a
mechanism that involves extracellular Ca2� influx,
PKC, tyrosine kinase(s), and RhoA (Kanumilli et al.,
2002).

Phosphorylation of the transcription factor cAMP re-
sponse element-binding protein has recently been re-
ported in response to quisqualate application in CHO
cells expressing either mGlu1� or mGlu5a receptors
(Warwick et al., 2005). This effect is secondary to PKC
activation (Warwick et al., 2005).

We have shown that extracellular signal-regulated
kinases (ERKs)/mitogen-activated protein kinases
(MAPKs) are involved in the mGlu1 receptor signaling.
Activation of mGlu1� receptors in CHO cells induces
ERK2 phosphorylation through a mechanism that is
sensitive to PTX and requires the activation of PKC
(Ferraguti et al., 1999). In a subsequent study, the
mGlu1� receptor-mediated ERK phosphorylation was
shown to require the activation of src-family kinases and
to be independent of Ca2� and phosphatidylinositol 3-ki-
nase (PI3K) activity (Thandi et al., 2002). In addition to
preferential activation of ERK2, ERK1 can also be phos-
phorylated in response to mGlu1 receptor activation
(Thandi et al., 2002). A number of reports highlight the
importance of the ERK pathway in the functioning of
native mGlu1 receptors. In the spinal cord, ERK1/2 ac-
tivation mediated by mGlu1 (and mGlu5) receptors con-
tributes to the process of nociceptive sensitization,
which underlies some of the hallmark features of chronic
pain (Karim et al., 2001). Hypoxia combined with glu-
cose deprivation induces a particular form of long-term
potentiation (LTP) in cultured striatal neurons. This
“pathological” LTP requires the stimulation of NMDA
and mGlu1 receptors and is mediated by the activation
of PKC and ERK1/2 (Calabresi et al., 2001).

Tyrosine phosphorylation of focal adhesion kinase me-
diated by mGlu1 (and mGlu5) receptors has been shown
both in recombinant cells and in hippocampal slices and
seems to be mediated by PLC and Ca2�/calmodulin sig-
naling pathways (Siciliano et al., 1996; Shinohara et al.,
2001). Focal adhesion kinase phosphorylation might me-
diate the effect of glutamate on cytoskeleton dynamics.

mGlu1 receptors can also evoke responses that are
independent of G-proteins. In CA3 pyramidal cells, for
example, the induction of excitatory postsynaptic cur-
rents (EPSCs) mediated by mGlu1 receptors is G-pro-
tein-independent and requires the activation of tyrosine
kinases of the src family (Heuss et al., 1999). It is note-
worthy that cytosolic tyrosine kinases, such as syk, c-src,
and fyn, can interact directly with the C terminus of
mGlu1� receptors (Okubo et al., 2004). Activation of the
tyrosine kinase src by mGlu1 receptors has also been
shown in cerebellar PCs, where, in turn, it modulates
GABAA receptor function (Boxall, 2000).
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Activation of mGlu receptors regulates the activity of
a variety of ligand- and voltage-gated ion channels, such
as Ca2� channels, K� channels, and nonselective cation
channels (for review, see Anwyl, 1999). Group I mGlu
receptors negatively modulate VSCCs in several cellular
systems (Sayer et al., 1992; Swartz and Bean, 1992; Hay
and Kunze, 1994; Choi and Lovinger, 1996). Activation
of mGlu1� receptors was shown to inhibit both N-type
and P/Q-type VSCCs in HEK-293 cells (McCool et al.,
1998) and N-type VSCCs in superior cervical ganglion
neurons (Kammermeier and Ikeda, 1999). The molecu-
lar mechanism underlying the inhibition of P/Q-type
Ca2� currents by mGlu1 receptors was explored by
Kitano et al.(2003a), who found that mGlu1� receptors
and the � subunit of P/Q-type VSCCs colocalize at den-
drites of cerebellar PCs and can form heteromeric com-
plexes mediated by the intracellular domains of the two
proteins. Activation of mGlu1 receptors can also activate
L-type Ca2� currents in cultured cerebellar granule cells
(Chavis et al., 1995, 1996). The coupling of mGlu1 re-
ceptors to L-type Ca2� channels is mediated by a PTX-
sensitive G-protein and by ryanodine receptors (RyRs)
(Chavis et al., 1996; Fagni et al., 2000). In particular, the
activation of mGlu1 receptors triggers a functional cou-
pling between RyRs and L-type Ca2� channels, possibly
through the interaction with Homer proteins that pro-
vide a physical link between mGlu1 receptors and RyRs
(Fagni et al., 2000). It is noteworthy that activation of
mGlu1 receptors can also enhance the activity of Ca2�-
dependent K� channels, an effect that also involves
RyRs and L-type Ca2� channels (Chavis et al., 1998).

In transfected SCG neurons, mGlu1� receptors nega-
tively modulate M-type voltage-gated K� channels via a
PTX-resistant pathway (Ikeda et al., 1995). Cotransfec-
tion with RGS2 strongly reduces this inhibitory action of
mGlu1� on M-type K� currents (Kammermeier and
Ikeda, 1999). The inwardly rectifying K� channels are
also negatively modulated by mGlu1 receptors. How-
ever, the underlying mechanism is debatable. In RNA-
injected X. laevis oocytes, inhibition of inwardly rectify-
ing K� channels by mGlu1� receptors was found to be
either insensitive (Sharon et al., 1997) or sensitive
(Saugstad et al., 1996) to PTX. The different amounts of
RNA injected into oocytes in the two studies may help to
explain this discrepancy.

Tandem-pore K� channels are additional targets for
group I mGlu receptors. The members of this family
mainly expressed in neurons are TASK and TREK chan-
nels, which can be modulated by both mGlu1 and mGlu5
receptors. For example, activation of mGlu1 receptors
inhibits TREK and/or TASK channels in cultured cere-
bellar granule cells and spinal motoneurons (Alvarez et
al., 2000; Talley et al., 2000; Chemin et al., 2003). In
transfected COS-7 cells, activation of mGlu1� receptors
inhibits TREK and TASK currents as a result of PI
hydrolysis. In particular, inhibition of TREK is mediated
by DAG and phosphatidic acid (produced, respectively,

by PLC and PLD), whereas inhibition of TASK involves
IP3 (Chemin et al., 2003).

Activation of mGlu1 receptors in cerebellar PCs in-
duces a slow EPSC, which seems to be mediated by
nonselective cation channels (Canepari et al., 2001). In-
duction of this current is G-protein-dependent, does not
require PKC, protein kinase A, protein kinase G, or
PLC, and is inhibited by tyrosine phosphorylation
(Canepari and Ogden, 2003). Slow EPSCs have been
proposed to be mediated, at least in part, by TRPC1, a
member of the TRPC family of nonspecific cation chan-
nels (Kim et al., 2003). Immunoprecipitation experi-
ments on rat brain extracts showed an association be-
tween mGlu1� receptors and TRPC1, possibly through
Homer proteins, and the onset of slow EPSC can be
reconstituted in CHO cells expressing both mGlu1� re-
ceptors and TRPC1 (Kim et al., 2003). TRP-dependent
slow EPSCs mediated by mGlu1 and mGlu5 receptors
have also been described in hippocampal CA3 pyramidal
cells (Gee et al., 2003).

Group I mGlu receptors can also modulate the activity
of ligand-gated ion channels, such as AMPA and NMDA
receptors, thus contributing to the induction of activity-
dependent forms of synaptic plasticity (Anwyl, 1999).
Pharmacological activation of group I mGlu receptors
facilitates both AMPA and NMDA responses in spinal
motoneurons through a pathway that involves PKC
(Ugolini et al., 1997). Because spinal motoneurons do
not express mGlu5 receptors (Alvarez et al., 2000), po-
tentiation of AMPA/NMDA currents is likely to be me-
diated by mGlu1 receptors. In X. laevis oocytes, activa-
tion of mGlu1 receptors enhances the trafficking of
NMDA receptors to the outer membrane, a process that
is mediated by exocytosis (Lan et al., 2001). The mech-
anisms underlying the potentiation of NMDA currents
mediated by mGlu1 receptors include PI hydrolysis, ac-
tivation of PKC, and changes in cytoskeleton dynamics
(Skeberdis et al., 2001). More recently, a tyrosine kinase
cascade, involving Pyk2 kinase and the src family ki-
nases Src and Fyn, has been implicated in the potenti-
ation of NMDA receptor activity mediated by mGlu1�
receptors in cultured cortical neurons (Heidinger et al.,
2002). Activation of both mGlu1 and mGlu5 receptors
induces phosphorylation of the NR2B NMDA receptor
subunit in the spinal cord under conditions of inflamma-
tory hyperalgesia (Guo et al., 2004). This phosphoryla-
tion is mediated by PKC and requires the activation of
IP3 receptors (Guo et al., 2004).

There are also a few reports showing that activation of
mGlu1 receptors modulates GABAA currents. This mod-
ulation has been shown in cerebellar PCs in response to
the combined activation of mGlu1 and TrkB receptors
(see section VI.B.6) and in retinal amacrine cells, in
which stimulation of group I mGlu receptors inhibits
GABAA currents through a mechanism that involves an
increase in intracellular Ca2�, which triggers a calmod-
ulin/calcineurin cascade (Vigh and Lasater, 2003). How-
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ever, it is not known whether the latter process is me-
diated by mGlu1 or mGlu5 receptors (Vigh and Lasater,
2003).

C. Metabotropic Glutamate 1 Receptor Function and
Interacting Proteins

Homer proteins are a family of proteins characterized
by an enabled/vasodilator-stimulated phosphoprotein
homology-like domain, which binds specifically to a pro-
lin-rich sequence present in several proteins, such as
group I mGlu receptors, IP3 receptors, ryanodine recep-
tors, and Shank. So far, several members of the Homer
family have been cloned: Homer1a, -1b, -1c, -2, and -3
(Brakeman et al., 1997; Kato et al., 1997, 1998; Sun et
al., 1998; Tu et al., 1998). With the exception of
Homer1a, they are characterized by a C-terminal coiled-
coil domain, which allows multimerization (Kato et al.,
1998; Tu et al., 1998). Homer proteins are constitutively
expressed, with the exception of Homer1a that is an
immediate early gene rapidly induced in response to
neuronal activation (Brakeman et al., 1997; Tu et al.,
1998).

All Homer proteins bind to a proline-rich domain (PP-
SPFR) within the C terminus of mGlu1� and -5 recep-
tors (Brakeman et al., 1997; Tu et al., 1998). The colo-
calization of Homer proteins and group I mGlu receptors
in discrete clusters has been reported in several systems
(Brakeman et al., 1997; Ango et al., 2000; Kammermeier
et al., 2000), although there are exceptions. For example,
mGlu1 receptors and Homer1c colocalize in the molecu-
lar layer of the cerebellar cortex, but they are segregated
in the hippocampus (Tadokoro et al., 1999). The expres-
sion of Homer1a, which lacks the multimerization do-
main, disrupts the interaction between group I mGlu
receptors and the other Homer proteins (Tu et al., 1998).
This finding suggests that Homer1a may have a role in
regulating the association of mGlu/Homer complexes,
possibly acting as a dominant-negative Homer (Tu et al.,
1998).

Homer multimers, in particular Homer1b, -1c, and -3,
can associate with mGlu1� and IP3 receptors (Fig. 3),
providing a structural link between two molecules that
are functionally coupled (Tu et al., 1998). Homer can
also associate with Shank, a scaffolding protein of the
PSD that forms macromolecular complexes with other
scaffolding proteins (e.g., PSD-95), ion channels (e.g.,
NMDA receptors), mGlu1/5 receptors, and signaling pro-
teins (Tu et al., 1999; Sheng, 2001). Although group I
mGlu receptors can associate with Shank indirectly, via
interactions with Homer, they can also bind the PDZ
domain of Shank directly through their C-terminal do-
main (Tu et al., 1999). Homer1 has been shown to me-
diate the association of mGlu1, PLC�4, and IP3 receptor
in mouse cerebellum (Nakamura et al., 2004). More re-
cently, the interaction between Homer1b and Shank2
has been implicated in the coupling of group I mGlu
receptors to PLC�3 (Hwang et al., 2005). All of these

findings indicate that at glutamatergic synapses Homer
proteins are involved in the organization of the postsyn-
aptic signaling molecules in a functional unit, bridging
group I mGlu receptors, IP3, and ryanodine receptors to
scaffolding molecules such as Shank, which in turn as-
sociates to several other effectors (Sheng, 2001). Group I
mGlu receptors are coupled to PI3K via the interaction
with Homer proteins and the PI3K enhancer, a recently
identified GTPase that activates PI3K (Rong et al.,
2003). In cultured hippocampal neurons, activation of
mGlu receptors induces the association of a complex
composed of mGlu1/5 receptors, Homer, and PI3K en-
hancer, which may contribute to the neuroprotective
activity of group I mGlu receptors by preventing apopto-
tic death (Rong et al., 2003).

A role for Homer proteins in regulating the activity of
mGlu1 receptors has been demonstrated in cultured cer-
ebellar PCs transfected with Homer 1a, which show
reduced Ca2� responses mediated by mGlu1 receptors,
compared with cells transfected with Homer1b or with
nontransfected cells (Tu et al., 1998). The reduced activ-
ity of mGlu1 receptors can be explained by a dominant-
negative effect of Homer1a toward other Homer pro-
teins, which disrupts the physical and functional
coupling between mGlu1� and IP3 receptors.

Transfection of Homer2b, which contains the coiled-
coil multimerization domain, reduces the inhibition of
the N-type VSCCs mediated by mGlu1� receptors in
SCG neurons (Kammermeier et al., 2000). This effect of
Homer2b is reversed by coexpression of the nonmultim-
erizing Homer1a (Kammermeier et al., 2000). A similar
pattern of modulation applies also to M-type potassium
currents (Kammermeier et al., 2000).

As described in section IV.A, agonist-independent ac-
tivity has been reported for mGlu1� receptors expressed
in heterologous systems (Prézeau et al., 1996). The in-
teraction of Homer3 with mGlu1� receptors in cultured
cerebellar granule cells prevents the constitutive activ-
ity of mGlu1� receptors (Ango et al., 2001). Knock down
of Homer3 or its coexpression with Homer1a leads to an
increase in basal PI turnover and in the basal open
probability of Ca2�-dependent big K� channels (Ango et
al., 2001). Homer proteins, therefore, may have a pivotal
role in the mechanisms of activation of group I mGlus,
even in the absence of exogenous stimulation (Ango et
al., 2001). Finally, Homer1c modulates intracellular
Ca2� transients induced by mGlu1� stimulation by
metal cations (Ca2� and Gd3�) in cotransfected HEK-
293 cells (Abe et al., 2003a).

Besides their effects on receptor signaling, Homer pro-
teins can also regulate the trafficking of mGlu1 recep-
tors. The expression of mGlu1� receptors on the cell
surface of HEK-293 cells is increased when they are
cotransfected with Homer1a (Ciruela et al., 1999b; Mi-
nami et al., 2003). However, such an increase was not
observed in HeLa cells (Roche et al., 1999), but this
inconsistency could be explained by a different endoge-
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nous expression of long Homer proteins. Conversely, cell
surface expression of mGlu1� receptors is reduced when
they are cotransfected with Homer1b or -1c (Roche et al.,
1999; but see Ciruela et al., 2000; Abe et al., 2003a;
Kammermeier, 2006). This restraint on cell surface ex-
pression of mGlu1� receptors by Homer1b seems to de-
pend on the retention of the receptor in the endoplasmic
reticulum (Roche et al., 1999). In cultured neocortical
neurons, Homer1c produces an increase in the dendritic
trafficking of mGlu1� receptors, possibly because of a
facilitation of receptor transport (Ciruela et al., 2000).
Moreover, long Homer proteins induce mGlu1� receptor
surface clustering both in non-neuronal cell lines and
primary neurons in culture (Kammermeier, 2006). Stud-
ies carried out in cerebellar PCs in vitro show that
depolarization induces the expression of Homer1a,
which in turn suppresses internalization of mGlu1 re-
ceptors and increases their number on the cell plasma
membrane, with both effects being mediated by the
MAPK pathway (Minami et al., 2003). Homer1a may,
therefore, exert a functional competition with the longer
Homer isoforms for receptor binding, hence providing a
mechanism for the regulation of mGlu1� receptor con-
tent at the plasma membrane and consequently also at
synaptic sites. This mechanism might contribute to tune
neuronal excitability and synaptic plasticity.

The recently identified PDZ domain-containing pro-
tein tamalin associates with cytohesin and with the C
terminus of mGlu1� receptors, thereby regulating
mGlu1� receptor trafficking (Kitano et al., 2002). Tama-
lin is characterized by several protein-binding domains
that allow its interaction with signaling or scaffolding
proteins (Kitano et al., 2003b). More recently, tamalin
has been shown to possess an immunoreceptor tyrosine-
based activation motif that upon phosphorylation allows
the association with syk kinase (Hirose et al., 2004). The
c-src and fyn kinases phosphorylate both immunorecep-
tor tyrosine-based activation motif and syk after their
recruitment (Hirose et al., 2004). Coimmunoprecipita-
tion experiments showed that in rat brain mGlu1� is
present in complexes containing tamalin, c-src, fyn, syk,
and the phosphatase SHP-2 (Hirose et al., 2004). How-
ever, the functional significance of these interactions is
still unclear.

Activation of mGlu1� expressed in heterologous sys-
tems has been linked to a rearrangement of the cytoskel-
eton, which might result from a direct interaction of
the receptor with cytoskeletal proteins. Activation of
mGlu1� receptors in CHO cells causes a marked rear-
rangement of actin filaments and a modification of cell
morphology from a square shape to a spindle/bar shape
(Kubo et al., 1998; Mody et al., 1999; Shinohara et al.,
2001). Increases in extracellular Ca2� concentrations
amplify these effects, suggesting a role for the Ca2�

sensing properties of mGlu1 receptors (Kubo et al.,
1998). Activation of mGlu1� receptors in transfected
HEK-293 cells induces cytoskeletal changes similar to

those associated with an increased synthesis of mem-
brane phospholipids (Hirai et al., 1999). Immunoprecipi-
tation experiments performed on rat brain extracts re-
vealed a direct interaction between mGlu1� receptors
and tubulin, one of the main constituents of the cytoskel-
eton (Ciruela et al., 1999a). This association was con-
firmed in mGlu1�-transfected BHK cells, in which re-
ceptor activation induces the reorganization of tubulin
and morphological changes (Ciruela and McIlhinney,
2001).

The mGlu1� receptor can also associate directly with
4.1G, a member of the 4.1 superfamily of cytoskeletal
proteins, which play key roles in several cellular func-
tions, such as protein sorting, mitosis, and intracellular
signaling (Lu et al., 2004). It is noteworthy that immu-
noprecipitation experiments failed to show any interac-
tion between mGlu1� receptors and 4.1G, suggesting
that the C-terminal tail of mGlu1� receptors is critical
for this interaction (Lu et al., 2004).

A further association of mGlu1� receptors with caveo-
lin proteins has been reported (Burgueño et al., 2003,
2004). Caveolin networks form small membrane mi-
crodomains known as caveolae, which have a critical role
in endocytosis, lipid transport, and signal transduction.
The interaction with caveolins seems to have a role in
mGlu1� receptor trafficking and signaling as cotransfec-
tion of mGlu1� receptors with caveolin-2� in HEK-293
cells modifies the subcellular localization of mGlu1� re-
ceptors, whereas cotransfection with caveolin-1 sup-
presses the constitutive activity of the receptor (Bur-
gueño et al., 2004).

Coimmunoprecipitation experiments have shown an
association between mGlu1� and adenosine A1 recep-
tors in cerebellar synaptosomes and recombinant cells
(Ciruela et al., 2001). This association involves the
C-terminal domain of mGlu1� receptors and might be
relevant for mechanisms of neurodegeneration/neuro-
protection because activation of A1 receptors attenuates
the amplification of NMDA toxicity produced by the
mGlu1/5 receptor agonist, quisqualate, in cultured cor-
tical neurons (Ciruela et al., 2001).

A specific interaction between the C-terminal tail of
group I mGlu receptors and a member of the mamma-
lian seven in absentia homologs (Siah) family, Siah-1A,
has also been demonstrated (Ishikawa et al., 1999).
Within the C terminus of mGlu1�, residues Lys905–
Pro932 interact directly with Siah-1A and with Ca2�/
calmodulin in a competitive manner (Ishikawa et al.,
1999). Siah proteins contain a RING finger domain sug-
gesting that they might participate in targeting specific
proteins for degradation in the proteasome (Lorick et al.,
1999). When coexpressed with mGlu1� receptors in SCG
neurons, Siah-1A reduces the ability of the receptor to
inhibit N-type Ca2� currents (Kammermeier and Ikeda,
2001).

In cultured cerebellar PCs, a direct interaction be-
tween mGlu1 and GABAB receptors, in which both
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GABAB receptors and extracellular Ca2� regulate
mGlu1 receptor signaling, has been found (Tabata et al.,
2004). Whether this interaction is peculiar to PCs or can
be extended to other neurons remains to be established.

The existence of a functional interaction between
mGlu1 receptors and ephrin-B2 has been demonstrated
recently (Calò et al., 2005). Immunoprecipitation exper-
iments performed on rat brain extracts revealed the
presence of macromolecular complexes composed of
mGlu1� receptors, ephrin-B2, Homer1b/-1c, the NR1
subunit of NMDA receptors, and RGS3. In addition,
activation of ephrin-B2 by means of a clustered Eph-B
receptor/Fc chimera amplifies the stimulation of PI hy-
drolysis mediated by mGlu1 receptors in brain slices and
cultured neurons. However, fluorescence resonance en-
ergy transfer analysis excludes a direct interaction be-
tween mGlu1 receptors and ephrin-B2, suggesting that
coupling is mediated through scaffolding proteins (Calò
et al., 2005).

D. Desensitization and Trafficking

Desensitization of GPCRs (i.e., the reduced response
to prolonged agonist stimulation) involves several mech-
anisms, such as phosphorylation, uncoupling from G-
proteins, internalization, and down-regulation. Desensi-
tization/internalization of mGlu1 receptors may be
induced by the activation of mGlu1 receptors themselves
(homologous desensitization) and by the activation of
different receptors (heterologous desensitization) (Desai
et al., 1996; Mundell et al., 2002). Both PKC and G-
protein coupled receptor kinases (GRKs) have been im-
plicated in mGlu1 receptor desensitization.

A role for PKC was first demonstrated in cultured
cerebellar granule cells, which express mGlu1 receptors.
In these cultures, activation of PKC by phorbol esters
reduces the stimulation of PI hydrolysis mediated by
mGlu1 receptors, whereas PKC inhibitors reduce homol-
ogous desensitization of mGlu1 receptors (Catania et al.,
1990). In recombinant cells, PKC activation by phorbol
esters can also inhibit both the constitutive and agonist-
stimulated activity of mGlu1 receptors, whereas PKC
inhibitors enhance mGlu1 receptor signaling (Aramori
and Nakanishi, 1992; Thomsen et al., 1993). The molec-
ular bases of PKC-mediated desensitization have been
partially clarified. It has been shown that activated
mGlu1 receptors are transiently phosphorylated by PKC
(Alaluf et al., 1995). PKC phosphorylates at least one
threonine residue (Thr695), which has a critical role in
the onset of desensitization (Francesconi and Duvoisin,
2000). It should be here remembered that Thr695 is
located within intracellular loop i2, a key domain for
G-protein coupling (Gomeza et al., 1996). In addition,
PKC desensitizes the stimulation of PI hydrolysis but
not the activation of adenylyl cyclase activity mediated
by mGlu1 receptors, suggesting that Thr695 phosphory-
lation specifically impairs coupling to Gq (Francesconi
and Duvoisin, 2000). Besides Thr695, most of the intra-

cellular tail of the mGlu1� receptor (residues Ser894–
Leu1199) is critical for PKC-dependent desensitization
(Mundell et al., 2003). Internalization of both mGlu1�
and -1� receptors in response to agonist or phorbol ester
application has been reported in several heterologous
expression systems, with a higher efficacy toward
mGlu1� receptors (Ciruela and McIlhinney, 1997; Mun-
dell et al., 2002). It is noteworthy that PKC is involved in
the internalization of mGlu1� receptors, whereas inter-
nalization of mGlu1� receptors is PKC-independent
(Mundell et al., 2002). In HEK-293 cells, stimulation of
M1 muscarinic receptors, which are coupled to Gq/11 and
are endogenously expressed by these cells, induces
mGlu1 receptor internalization through a mechanism
that involves PKC and Ca2�/calmodulin-dependent pro-
tein kinase II (Mundell et al., 2002).

A major mechanism of homologous desensitization of
GPCRs involves GRKs and �-arrestins. Phosphorylation
of GPCRs by GRKs promotes binding of �-arrestin pro-
teins, which uncouple the receptor from the G-protein
and target the receptor to clathrin-coated pits for inter-
nalization (Dale et al., 2002). A number of GRKs, namely
GRK2, GRK4, and GRK5, were found to induce mGlu1�
receptor phosphorylation and desensitization (Dale et
al., 2000; Sallese et al., 2000). In HEK-293 cells, GRK2
contributes to the desensitization of both basal and ag-
onist-stimulated mGlu1� activity (Dale et al., 2000).
Whereas the role of GRK4 in mGlu1� receptor desensi-
tization in HEK-293 cells remains controversial (Dale et
al., 2000; Sallese et al., 2000), GRK4 seems to be in-
volved in the homologous desensitization of native
mGlu1 receptors in cultured cerebellar PCs, as shown by
the use of GRK4 antisense oligonucleotides (Sallese et
al., 2000). Immunoprecipitation experiments confirmed
a direct interaction of mGlu1 with both GRK2 (Dale et
al., 2000) and GRK4 (Sallese et al., 2000). The residues
Ser869 to Val893 within the C terminus of mGlu1� recep-
tors seem to be essential for GRK-dependent internal-
ization (Mundell et al., 2003). Different mechanisms
mediate the desensitization of mGlu1 receptors by
GRK2 and GRK4 (Iacovelli et al., 2003; Dhami et al.,
2004); whereas GRK4 acts by phosphorylating mGlu1
receptors (Iacovelli et al., 2003), GRK2 activity is largely
independent of phosphorylation and might be mediated
by a direct interaction of GRK2 with G�q (Dale et al.,
2000; Dhami et al., 2004). Agonist-induced internaliza-
tion of mGlu1� and -� receptors also depends on �-ar-
restins and dynamin (Dale et al., 2001; Mundell et al.,
2001, 2002). GRK-mediated desensitization and certain
intracellular transduction mechanisms seem to be inter-
dependent, as activation of the cAMP/protein kinase A
pathway inhibits the interaction of GRK2 and �-arrestin
with mGlu1 receptors (Pula et al., 2004), whereas �-ar-
restin may also act as a signaling protein mediating
ERK1/2 activation by mGlu1 receptors (Iacovelli et al.,
2003).
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A constitutive internalization, independent of agonist
stimulation, has been described for the mGlu1� receptor
(Dale et al., 2001; Doherty et al., 1999b). When trans-
fected in HEK-293 cells, mGlu1� receptors are constitu-
tively internalized, whereas cell surface expression of
mGlu1� receptors remains stable (Pula et al., 2004).
Constitutive internalization of mGlu1� receptors re-
quires �-arrestins and clathrin (Pula et al., 2004) and is
mediated by the small GTP-binding protein Ral, its gua-
nine nucleotide exchange factor RalGDS (Ral GDP dis-
sociation stimulator), and phospholipase D2, which is
found to be associated with mGlu1 receptors under rest-
ing conditions (Bhattacharya et al., 2004).

A marked alteration of mGlu1 receptor trafficking has
been observed in a transgenic mouse model of spinocer-
ebellar ataxia type 1 (SCA1) (Skinner et al., 2001). In
SCA1 mice, cerebellar PCs are characterized by den-
dritic atrophy and by the presence of cytoplasmic vacu-
oles that contain several proteins such as AMPA, PKC�,
and mGlu1 receptors (Skinner et al., 2001).

V. Pharmacology

The ability of glutamate to bind to different types of
receptors resides in its great conformational flexibility.
Distinct domains of mGlu1 receptors are involved in
agonist binding, G-protein coupling, and intermolecular
interactions, indicating that multiple regions of the re-
ceptor can be targeted for pharmacological intervention.

The glutamate binding site in the mGlu1 receptor
resides in the large N terminus extracellular domain, as
established by crystallography and mutagenesis studies
(Takahashi et al., 1993; Okamoto et al., 1998; Kun-
ishima et al., 2000; see also section III.A for further
details). These studies allowed resolution of the binding
pocket for glutamate (Jingami et al., 2003) and construc-
tion of numerous models of receptor activation (Jensen
et al., 2002; Parmentier et al., 2002; Jingami et al.,
2003). However, no orthosteric agonists that activate
selectively mGlu1 receptors without also recruiting
mGlu5 receptors have been developed; this may simply
reflect the similarity in the amino acid sequence of the
LBD of mGlu1 and mGlu5 receptors. Conversely, the
two receptors can be distinguished by the use of ortho-
steric antagonists or allosteric modulators, as high-
lighted in the following.

A. Agonist Pharmacology

The first orthosteric group I mGlu receptor agonists,
quisqualate (Sladeczek et al., 1985; Nicoletti et al.,
1986c) and ibotenic acid (Nicoletti et al., 1986a,b), were
described before the cloning of the mGlu1 receptor. How-
ever, these two drugs are not selective and can also
activate ionotropic glutamate receptors (Watkins et al.,
1990; Schoepp et al., 1999). Quisqualate is frequently
used as a reference mGlu1 receptor agonist in heterolo-
gous expression systems because of its high potency

(Sugiyama et al., 1987; Houamed et al., 1991; Masu et
al., 1991; Aramori and Nakanishi, 1992). A number of
conformationally restricted glutamate analogs show ag-
onist activity at mGlu1 receptors. These include trans-
1-amino-cyclopentyl-1,3-dicarboxylic acid (ACPD) (Palmer
et al., 1989) and two L-isomers of 2-carboxycyclopropyl-
glycine, L-carboxycyclopropylglycine-I and L-carboxycy-
clopropylglycine-II (Hayashi et al., 1992). The activity of
these molecules suggests that glutamate activates
mGlu1 receptors (and other mGlu receptors) in its ex-
tended configuration. Trans-ACPD is historically impor-
tant as the first mGlu receptor ligand that does not
interact with ionotropic glutamate receptors. The activ-
ity of trans-ACPD resides exclusively in the 1S,3R-iso-
mer (1S,3R-ACPD) (Irving et al., 1990; Schoepp et al.,
1991; Schoepp and True, 1992; Cartmell et al., 1993).
Although 1S,3R-ACPD has been used for several years
for the study of group I mGlu receptors, it is not selective
for mGlu1 or mGlu5 receptors but displays agonist ac-
tivity at nearly all mGlu receptor subtypes (Schoepp et
al., 1999).

The development of phenylglycine derivatives as
mGlu receptor ligands led to the identification of 3,5-
DHPG as the first selective agonist of group I mGlu
receptors (Schoepp et al., 1994). The activity of 3,5-
DHPG resides exclusively in the S-isomer (Baker et al.,
1995). Isosteric replacement of the �-carboxylic acid of
3,5-DHPG by a phosphinic group results in 3,5-dihy-
droxyphenylmethylphosphinic acid, which behaves as a
relatively potent agonist (EC50 � 28 �M) on PI-linked
mGlu receptors in cortical slices (Boyd et al., 1996). The
monophenolic analog of 3,5-DHPG, namely 3-hydroxy-
phenylglycine, retains the agonist activity, although it
displays lower potency and efficacy (Birse et al., 1993;
Thomsen et al., 1994a; Joly et al., 1995).

The rank order of potency of agonists at recombinant
mGlu1 receptors is quisqualate � 3,5-DHPG � gluta-
mate �� 1S,3R-ACPD � 3-hydroxyphenylglycine, with
glutamate behaving as a full agonist and the other drugs
as partial agonists (Aramori and Nakanishi, 1992;
Thomsen et al., 1993; Ferraguti et al., 1994; Joly et al.,
1995; Lin et al., 1997).

Comparable rank orders of agonist potencies have
been obtained for rat and human mGlu1 receptors (Lin
et al., 1997). Agonists show higher potency in activating
rat mGlu1� than rat mGlu1� receptors (Pickering et al.,
1993; Flor et al., 1996) but equal potency in activating
human receptors (Stephan et al., 1996). However, it
should be kept in mind that agonist potency correlates
with the expression levels of mGlu1 receptors, as shown
by data obtained in cultured cerebellar granule cells
(Favaron et al., 1992) and by the use of an inducible
expression system, which allows a timed control of
mGlu1 receptor expression (Hermans et al., 1999).

Other molecules, which include �-N-methylamino-L-
alanine (Copani et al., 1991; Thomsen et al., 1993) and
several sulfur-containing amino acids (e.g., cysteic acid,
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homocysteic acid, L-homocysteine sulfinic acid, and L-
cysteine sulfinic acid) (Nicoletti et al., 1986b; Porter and
Roberts, 1993; Thomsen et al., 1994b; Clark et al., 1998)
can stimulate PI hydrolysis in brain slices and in cells
expressing recombinant mGlu1 receptors. However, the
activity of sulfur-containing amino acids might be due to
the inhibition of glutamate uptake (Thomsen et al.,
1994b).

B. Competitive Antagonists

The first important advance for the development of
mGlu1 antagonists was the discovery that phenylglycine
analogs [4-carboxyphenylglycine (4-CPG), 4-carboxy-3-
hydroxyphenylglycine, and MCPG] were able to antag-
onize mGlu-mediated responses in rat spinal motoneu-
rons and cortical slices with little or no effects on
ionotropic glutamate receptors (Birse et al., 1993; Eaton
et al., 1993). When tested on mGlu1 receptors expressed
in recombinant systems, these phenylglycines were
shown to be competitive antagonists (Ferraguti et al.,
1994; Hayashi et al., 1994; Thomsen et al., 1994a; King-
ston et al., 1995). However, these compounds also
showed antagonist activity on mGlu5 receptors and ei-
ther agonist or antagonist activity at group II and III
mGlu receptors (Ferraguti et al., 1994; Hayashi et al.,
1994; Thomsen et al., 1994a; Kingston et al., 1995; Rob-
erts, 1995). Chiral separation or X-ray diffraction anal-
ysis indicated that the antagonistic properties reside in
the S-isomers of phenylglycine (Birse et al., 1993; Wilson
et al., 1997). Substitution at the �-position of S-4-CPG
with n-pentyl or cyclopropyl substituents causes a shift
in the selectivity from mGlu1 toward mGlu5 receptors
(Doherty et al., 1999a).

The selectivity and potency of phenylglycines as
mGlu1 receptor antagonists is increased with the addi-
tion of 2-methyl substituents (Clark et al., 1997).
LY367385, a 2-methylphenylglycine, behaves as a rela-
tively potent mGlu1 receptor antagonist with little or no
activity on mGlu5 or group II mGlu receptors. This
compound inhibits quisqualate-stimulated PI hydrolysis
in AV-12 cells expressing mGlu1� receptors with an
apparent IC50 value close to 10 �M (Clark et al., 1997;
Kingston et al., 2002). The �-thioxanthyl-9-methyl ana-
log of S-4-CPG (LY367366) is a more potent mGlu1
antagonist than LY367385 but shows similar potency on
mGlu5, mGlu2, and mGlu4 receptors (Clark et al., 1998;
Kingston et al., 2002). A conformationally restricted an-
alog of MCPG named (RS)-1-aminoindan-1,5-dicarboxy-
lic acid (AIDA), in which the �-substituent is tied to the
2-position of the phenyl ring, is a preferential mGlu1
receptor antagonist (Pellicciari et al., 1995; Moroni et
al., 1997), although its pharmacological window is not
sufficiently large to guarantee selective inhibition of
mGlu1 versus mGlu5 receptors within a wide range of
concentrations.

A derivative of aminothiophene dicarboxylic acid,
3-MATIDA, was shown to possess potent antagonist ac-

tivity toward mGlu1 receptors (IC50 � 6.3 �M) and no
affinity for mGlu5, mGlu2, and mGlu4 receptors (Moroni
et al., 2002). The antagonistic activity of 3-MATIDA on
mGlu1 receptors resides in the (�)-isomer (Costantino et
al., 2004). However, at high concentrations 3-MATIDA
also antagonizes AMPA and NMDA receptor responses
(Moroni et al., 2002).

A number of additional compounds show mixed antag-
onist activity at multiple glutamate receptors, including
mGlu1 receptors. For these compounds we refer the
reader to a dedicated review (Schoepp et al., 1999).

C. Positive Allosteric Modulators

Several compounds acting as positive allosteric mod-
ulators at mGlu1 have been identified recently. These
compounds are inactive on their own, but potentiate the
action of orthosteric agonists. The theoretical advantage
of these compounds from a therapeutic standpoint is
that they recruit exclusively receptors that are endog-
enously activated. Agonist potency and efficacy at rat
mGlu1� receptors are increased by 2-phenyl-1-benzene-
sulfonyl-pyrrolidine derivatives (including Ro 67-7476),
diphenylacetyl- and (9H-xanthene-9-carbonyl)-carbamic
acid esters (including Ro 01-6128), and the (9H-xan-
thene-9-carbonyl)-carbamic acid butyl ester (Ro 67-4853)
(Knoflach et al., 2001a). However, only Ro 67-4853 en-
hances glutamate efficacy on human mGlu1�, whereas
Ro 67-7476 and Ro 01-6128 are inactive (Knoflach et al.,
2001a). Subsequently, a series of diphenylacetyl-, 9H-
xanthene-, and 9H-thioxanthene-carbonyl carbamates
were reported as positive allosteric modulators of rat
mGlu1� (Wichmann et al., 2002).

D. Noncompetitive Antagonists

Early work suggested that 2-amino-3-phosphonopro-
pionic acid (AP3) was capable of antagonizing gluta-
mate-stimulated PI hydrolysis (Schoepp and Johnson,
1989a,b) and 1S,3R-ACPD-induced Ca2� mobilization
(Irving et al., 1990). Soon after, it was recognized that
AP3 was basically inactive on both rat mGlu1� and
mGlu5a receptors (Abe et al., 1992; Aramori and Naka-
nishi, 1992; Yuzaki and Mikoshiba, 1992; Thomsen et
al., 1993), displaying only partial inhibition at doses �1
mM (Aramori and Nakanishi, 1992; Ito et al., 1992;
Thomsen et al., 1993; Saugstad et al., 1995). This weak
inhibition was noncompetitive because it could not be re-
versed by increasing the agonist concentration (Schoepp
et al., 1990). However, the action of L-AP3 is confounded
by its ability to prevent the incorporation of myo-[3H]i-
nositol into membrane phospholipids (Ikeda, 1993).

The identification in 1996 of CPCCOEt showed that
compounds structurally unrelated to glutamate can se-
lectively and potently inhibit mGlu1 receptor function
(Annoura et al., 1996; Casabona et al., 1997) via alloste-
ric sites distant from the glutamate-binding pocket
(Okamoto et al., 1998; Litschig et al., 1999). This mole-
cule was shown to interact with Thr815 and Ala818 lo-
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cated at the extracellular surface of the TM helix 7
(Litschig et al., 1999) and its benzene ring to lie between
TM7 and TM3 (Pagano et al., 2000). The optical isomer
(�) is responsible for most of the antagonistic activity of
CPCCOEt at mGlu1 receptors (Ott et al., 2000). Subse-
quently, several additional noncompetitive mGlu1 an-
tagonists with a higher potency than that of CPCCOEt
have been discovered. Compounds BAY 36-7620 and
EM-TBPC were reported to interact within the 7TMD
(Carroll et al., 2001; Malherbe et al., 2003). BAY 36-7620
displays high potency (IC50 � 0.16 � 0.01 �M) in antag-
onizing responses mediated by rat mGlu1� receptors
and also behaves as an inverse agonist, being able to
inhibit the constitutive activity of mGlu1� receptors
(Carroll et al., 2001). EM-TBPC is characterized by
nanomolar concentration affinity for rat mGlu1� recep-
tors but low affinity for human mGlu1 receptors (Mal-
herbe et al., 2003).

NPS 2390, which belongs to a series of quinoline and
quinoxaline amides, is a noncompetitive antagonist of
group I mGlu receptors, with IC50 values of 5.2 and 82
nM for CaR/mGlu1 and CaR/mGlu5 chimeras, respec-
tively (van Wagenen et al., 2000). In a further effort to
identify more selective compounds based on these tem-
plates, a 2-quinoxaline carboxamide (NPS 2407) and a
2-quinoxaline ester (NPS 3018) were identified as selec-
tive mGlu1 inhibitors, with IC50 values of 17 and 52 nM,
respectively, at the CaR/mGlu1 chimera and no or low
activity (10 �M) at the CaR/mGlu5 chimera (Fairbanks
et al., 2001).

2,4-Dicarboxypyrroles have been identified as a new
class of highly selective noncompetitive mGlu1 antago-
nists (Micheli et al., 2003c). The most potent molecules
of this class (e.g., GW398171X) are characterized by
nanomolar concentration potency and are active both in
vitro and in vivo (Micheli et al., 2003a,b,c, 2004a,b).
These compounds interact with a region near the extra-
cellular loops of the mGlu1 receptor, although the pre-
cise binding site has not been identified (Micheli et al.,
2003c).

R214127 is a selective noncompetitive mGlu1 receptor
antagonist that binds to the same site as CPCCOEt and
BAY 36-7620 at human mGlu1� receptors with a Kd
value of 0.9 nM (Lavreysen et al., 2003). The availability
of radiolabeled [3H]R214127 enabled the evaluation of
the brain occupancy of BAY 36-7620 and NPS 2390 by ex
vivo autoradiography (Lavreysen et al., 2004a). At doses
of 10 mg/kg, NPS 2390 completely displaces specifically
bound [3H]R214127 in the cerebellum, whereas BAY
36-7620 inhibits [3H]R214127 binding by only 36 and
32% in cerebellum and thalamus, respectively (Lavrey-
sen et al., 2004a). A derivative of R214127, JNJ16259685,
acts as a selective noncompetitive antagonist of rat and
human mGlu1� receptors, with IC50 values of 3.24 and
1.21 nM, respectively (Lavreysen et al., 2004b). Ex vivo
autoradiography experiments were used to evaluate the
occupancy of mGlu1 receptors by JNJ16259685, which is

maximal in the cerebellum at doses as low as 0.16 mg/kg
(Lavreysen et al., 2004b). After subcutaneous injection
of 63 mg/kg JNJ16259685, mGlu1 receptor occupancy is
maximal after 10 min in thalamus and 30 min in cere-
bellum and lasts for 2 h. Maximal plasma concentrations
(Cmax) are 70.3 ng/ml (30 min postdose), whereas maxi-
mal brain concentrations are 62.9 ng/ml (1 h postdose)
(Lavreysen et al., 2004b).

YM-202074 is a new negative allosteric modulator of
mGlu1 receptors that displays nanomolar affinity and is
systemically active, reaching maximal brain concentra-
tions in a few minutes after intravenous injection (Ko-
hara et al., 2008).

Antagonist pretreatment of cells expressing the re-
combinant human mGlu1� receptor causes a marked
increase in both potency and efficacy of glutamate stim-
ulation (Lavreysen et al.,2002). This particular form of
“supersensitivity,” which is induced by both noncompet-
itive and competitive mGlu1 receptor antagonists, can-
not be simply described by the inhibition of receptor
desensitization mediated by the endogenous glutamate
(Lavreysen et al., 2002). Antagonist pretreatment in-
creases cell surface expression of mGlu1� receptors, sug-
gesting recruitment or stabilization of receptors at the
plasma membrane (Lavreysen et al., 2002).

VI. Anatomy and Physiology

A. Cellular and Subcellular Distribution

mGlu1 has been extensively expressed in the central
nervous system, being most intense in PCs of the cere-
bellar cortex and mitral/tufted cells of the olfactory bulb
(Martin et al., 1992; Shigemoto et al., 1992; Baude et al.,
1993). Strong expression was also detected in neurons of
the lateral septum, globus pallidus, ventral pallidum,
substantia nigra, hippocampus, and most of the tha-
lamic nuclei but not in the reticular nucleus, epithala-
mus, and brainstem (Martin et al., 1992; Baude et al.,
1993). Many other brain areas display moderate to low
expression levels of mGlu1. A detailed description of the
expression of mGlu1 receptor both at mRNA and protein
level can be found in Shigemoto and Mizuno (2000).

In most neuronal populations, the subcellular local-
ization of mGlu1 or of some of its splice variants has
been consistently associated with the postsynaptic spe-
cialization of excitatory synapses (Martin et al., 1992;
Baude et al., 1993; Gorcs et al., 1993; Petralia et al.,
1996; Shigemoto et al., 1997; Mateos et al., 2000). Im-
munogold studies have suggested that mGlu1 receptors
do not reside in the main body of asymmetric synapses
but rather are concentrated in the perisynaptic area, an
annulus of approximately 60 nm around the synaptic
specialization (Baude et al., 1993; Nusser et al., 1994;
Lujan et al., 1996; Mateos et al., 2000). Immunolabeling
for mGlu1 was also found in extrasynaptic areas up to
600 nm from the synapse (Lujan et al., 1996; Mateos et
al., 2000), although we often observed immunogold la-
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beling for mGlu1 even further. An interesting finding
was the detection of mGlu1� within the main body of
symmetric and probably GABAergic synapses (Hanson
and Smith, 1999; Hubert et al., 2001; Paquet and Smith,
2003; Kuwajima et al., 2004). However, the detection
method used in these studies, namely the pre-embed-
ding immunogold/silver labeling technique, does not
provide unequivocal evidence for the localization of this
receptor in the membrane specialization of GABAergic
synapses. On the other hand, preliminary confirmation
of these findings comes from the use of SDS-freeze-
fracture replica labeling (Ferraguti et al., 2007).

A critical analysis of studies describing the distribu-
tion of mGlu1 receptors should take into account the
specificity of the antibodies and of the conditions used.
Rigorous analysis, including testing in mGlu1-null mice,
has been performed for only a few antibodies (Ferraguti
et al., 1998, 2004; Alvarez et al., 2000), which may
explain the largely diverse pattern of immunostaining
reported in different papers. For example, in our hands,
all well characterized antibodies do not label glial cells.
Conversely, with two commercial antibodies [rabbit
polyclonal obtained from Chemicon International (Te-
mecula, CA) and mouse monoclonal obtained from BD
Pharmingen (San Diego, CA)], we could observe, respec-
tively, neuropil immunolabeling, which was attributed
to a partial cross-reactivity with mGlu5 receptors (Fer-
raguti et al., 1998; Alvarez et al., 2000), and cross-reac-
tivity with unknown proteins, because the labeling per-
sisted in mGlu1-null mice (F. Ferraguti, personal
communication). Several functional studies have sug-
gested a presynaptic localization of mGlu1 (Fotuhi et al.,
1994; Mannaioni et al., 2001; Wittmann et al., 2001);
this was corroborated by some ultrastructural immuno-
cytochemical studies (Hubert et al., 2001; Paquet and
Smith, 2003; Kuwajima et al., 2004). However, the evi-
dence for such presynaptic localization remains, in our
opinion, weak and requires independent confirmation by
means of alternative approaches.

B. General Physiological Properties

Several different physiological responses to gluta-
mate, including the modulation of interneuron and prin-
cipal neuron excitability in numerous brain areas as
well as of diverse forms of synaptic plasticity, have been
linked to mGlu1 receptors. Many of these effects depend
on the specific network in which mGlu1 receptors are
expressed and are discussed in detail in the appropriate
section. In the following sections, we provide a perspec-
tive on the role and implications of mGlu1 receptors in
specific neuronal circuitries by integrating distribution
and functional studies carried out for these receptors.
Because of space limitations, only those systems for
which a substantial body of anatomical and functional
data is available will be analyzed.

1. Distribution and Role of Metabotropic Glutamate 1
Receptors in the Olfactory System. The olfactory system

is important for reproductive functions, neuroendocrine
regulation, emotional responses, food selection, and rec-
ognition of conspecifics, predators, and preys (Shipley
and Ennis, 1996). Odor molecules are transduced by
olfactory receptor neurons located in the olfactory epi-
thelium. These neurons then project their axons through
the olfactory nerve to the olfactory bulb where they
make synapses in the glomerular layer with the apical
dendrites of mitral and tufted cells. The relay from the
nose to the mitral and tufted neurons is regulated by
local intrabulbar circuitries and by inputs from other
brain areas. Mitral and tufted cells, the output neurons
of the olfactory bulb, convey olfactory information to
higher order olfactory structures, which include the an-
terior olfactory nucleus, piriform cortex, olfactory tuber-
cle, entorhinal cortex, and some amygdaloid nuclei.
From these primary olfactory cortical structures other
connections are made to brain regions that integrate
olfactory information with other neural functions (Ship-
ley and Ennis, 1996).

In situ hybridization showed that neurons present in
almost all brain structures involved in the olfactory cir-
cuitry express relatively high levels of mGlu1 receptors
(Shigemoto et al., 1992). Mitral cells in the main and
accessory olfactory bulb are among the neurons with the
highest expression level of mGlu1 receptors in the brain
(Shigemoto et al., 1992). Tufted cells in the external
plexiform and glomerular layer also have high tran-
script levels for mGlu1 receptors, whereas granule cells
display only weak labeling (Shigemoto et al., 1992). Of
the different mGlu1 receptor splice variants, mGlu1� is
most abundantly expressed by mitral and tufted cells
both in terms of transcripts and protein (Martin et al.,
1992; Baude et al., 1993; Hampson et al., 1994; van den
Pol, 1995; Berthele et al., 1998; Ferraguti et al., 1998).
Intense mGlu1� immunoreactivity is found in the glo-
meruli and in the external plexiform layer where the
apical and lateral dendrites of mitral cells extend, re-
spectively (Martin et al., 1992; van den Pol, 1995; Fer-
raguti et al., 1998; Sahara et al., 2001). Somata and
dendritic arbors of tufted cells are also seen as immuno-
labeled (van den Pol, 1995). At the ultrastructural level,
mGlu1� receptor immunoreactivity in the glomerular
layer is associated with the postsynaptic junctions of
apical mitral dendrites forming asymmetrical synapses
with olfactory nerve terminals (van den Pol, 1995). It is
noteworthy that the immunolabeling in the external
plexiform layer is particularly strong in the presynaptic
region of the reciprocal synapse between the excitatory
mitral cell dendrite and the inhibitory granule cell den-
drite (van den Pol, 1995).

Mitral and tufted neurons display, in addition to
mGlu1�, abundant mRNA expression of the mGlu1�
receptor (Berthele et al., 1998); however, no immunolo-
calization data for this splice variant are available, be-
cause no selective immunological tools have as yet been
developed. Transcripts for the mGlu1� receptor isoform
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are weakly expressed in the olfactory bulb (Hampson et
al., 1994), where they are present in granule cells and to
a small extent in periglomerular neurons (Berthele et
al., 1998). However, this evidence cannot be easily rec-
onciled with a lack of labeling in periglomerular cells
using a pan-mGlu1 probe (Shigemoto and Mizuno,
2000). Moreover, despite the apparent presence of
mGlu1� mRNA in the main olfactory bulb, we failed to
detect immunoreactivity for this isoform (Ferraguti et
al., 1998). The use of antibodies against the N terminus
of mGlu1, common to all splice variants (pan-mGlu1),
confirmed the general distribution observed with spe-
cific mGlu1� antibodies (Fotuhi et al., 1993; Ferraguti et
al., 1998), which suggests a distribution of the short
isoforms, namely mGlu1� and/or mGlu1�, similar to
mGlu1�. In the granule cell layer, few large neurons are
intensely immunolabeled for mGlu1 and mGlu1�,
whereas the small granule cells do not show detectable
immunoreactivity (van den Pol, 1995; Ferraguti et al.,
1998). The largest of these cells might have been dis-
placed mitral cells, whereas those with smaller somata
had the appearance of short axon cells (van den Pol,
1995; Ferraguti et al., 1998).

The expression pattern of mGlu1 receptors in the ol-
factory bulb indicates that these receptors contribute to
mitral and tufted cell responses to glutamatergic inputs
from the olfactory nerve and can function as autorecep-
tors to sense the glutamate released from lateral den-
drites of mitral cells. Studies in cultured neurons, dis-
sociated from the main olfactory bulb, show that mGlu1
receptor activation enhances intracellular Ca2� concen-
trations in mitral cells and interneurons (Geiling and
Schild, 1996; Carlson et al., 1997) and increases the
frequency of miniature EPSCs in mitral cells (Schoppa
and Westbrook, 1997; Heinbockel et al., 2004). Activa-
tion of mGlu1 receptors increases the firing rate of mi-
tral cells, producing a voltage-dependent inward current
sensitive to K� and Ca2� channel blockers (Heinbockel
et al., 2004). Antagonists of mGlu1 receptors signifi-
cantly reduce mitral cell spontaneous firing and olfac-
tory nerve-evoked discharges via modulation of mem-
brane bistability (Heinbockel et al., 2004), an intrinsic
property of mitral cells that determines the responses to
olfactory nerve inputs (Heyward et al., 2001). These
results led Heinbockel et al. (2004) to suggest that
mGlu1 receptors exert a tonic modulation of basal and
sensory-evoked mitral cell discharges. Responses evoked
by the activation of mGlu1 receptors in mitral cells
would be facilitated by repetitive inhalations of an odor
and influence the temporal firing pattern, including os-
cillations and synchronous activity. In line with this
hypothesis, MCPG was shown to reduce rhythmic oscil-
lations in mitral cells evoked by olfactory nerve stimu-
lation (Schoppa and Westbrook, 2001). Activation of
mGlu1 receptors in the lateral dendrites of mitral cells,
presynaptic to granule cell dendrites, may produce a
local depolarization through a mechanism of autoexcita-

tion (van den Pol, 1995), which would counteract the
reciprocal inhibition from granule cells. Such an effect
would be specific for strongly activated mitral cells and
would increase lateral inhibition, hence increasing the
signal/noise ratio.

Glutamatergic deafferentation of the olfactory bulb,
by intranasal irrigation of ZnSO4, causes a biphasic
change (strong up-regulation at 2 days and down-regu-
lation at 16 days) in the expression of mGlu1� mRNA
without affecting the transcript levels of mGlu1� (Fer-
raris et al., 1997). Conversely, mGlu1� receptor protein
levels are found to be elevated at both 2 and 16 days
after olfactory deafferentation (Casabona et al., 1998). It
can be hypothesized that these two mGlu1 variants ei-
ther have a different cellular distribution or undergo a
different transcriptional regulation in the olfactory bulb.
In addition, altered trafficking of the mGlu1� receptor
protein might also account for these changes.

In the olfactory tubercle and piriform cortex, the neu-
ropil of all layers showed immunoreactivity for pan-
mGlu1, whereas no significant mGlu1� labeling is
detected (Wada et al., 1998). Likewise, marked immu-
nostaining was reported in the periamygdaloid cortex
for pan-mGlu1 but not for mGlu1� (Wada et al., 1998).

Optical imaging studies have recently shown that a
late component in the signal propagation of excitatory
transmission from association fibers to pyramidal cells
of the piriform cortex in guinea pig is mediated by
postsynaptic mGlu1 receptors (Sugitani et al., 2002,
2004). These findings confirm and extend previous phar-
macological data, showing that group I mGlu receptors
are involved in postsynaptic transmission in pyramidal
cells of the guinea pig piriform cortex (Libri et al., 1997).
This late propagation component seems to be important
for the maintenance of the reverberating positive feed-
back composed of association fibers in an active state
(Sugitani et al., 2004).

2. Distribution and Role of Metabotropic Glutamate 1
Receptors in the Hypothalamus. The hypothalamus is
responsible for integrating the myriad of endocrine, au-
tonomic, and behavioral responses that guarantee ho-
meostasis and reproduction. Consistent with the com-
plexity of the responses it regulates, the hypothalamus
is composed of numerous and heterogeneous nuclei. In
the rat hypothalamus, mGlu1 mRNA levels range from
low to high, depending on the nucleus (Shigemoto et al.,
1992), with most of the nuclei displaying labeled neu-
rons. Immunolabeling for mGlu1� reveals labeling
mainly in the lateral and anterior hypothalamus, preop-
tic area, and tuberomammillary, mammillary, suprachi-
asmatic, and dorsomedial nuclei (Van den Pol, 1994;
Kiss et al., 1996). On the other hand, the neuroendocrine
regions of the hypothalamus show weak or no mGlu1�
immunoreactivity (Van den Pol, 1994; but see Kiss et al.,
1996) but intense mGlu1� immunoreactivity (Mateos et
al., 1998), suggesting a major role for the latter receptor
isoform in neuroendocrine regulation.
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From a functional standpoint, hypothalamic mGlu1
receptors have multiple implications. Increases in se-
rum corticosterone levels have been found after intrace-
rebroventricular injection of group I mGlu receptor ago-
nists and of the selective mGlu1 receptor antagonist,
LY367285 (Johnson et al., 2001). These ambiguous re-
sults have been explained by illustrating a model in
which neurons of the hypothalamic paraventricular nu-
cleus that secrete corticotropin-releasing hormone are
tonically inhibited by GABAergic neurons, which, in
turn, are tonically stimulated by glutamate acting at
both ionotropic and mGlu1 receptors. On the other hand,
corticotropin-releasing hormone-secreting neurons also
express mGlu1 receptors and can therefore be directly
stimulated by group I mGlu receptor agonists (Johnson
et al., 2001). In the arcuate nucleus, all neurons contain-
ing growth-hormone releasing hormone and �-endor-
phin express mGlu1� receptors (Kiss et al., 1997). How-
ever, the effect of mGlu1 receptor ligands on growth
hormone secretion has not been investigated as yet.
Recent evidence suggests a role for hypothalamic
mGlu1� receptors in modulating female sexual receptiv-
ity. In rats, estradiol activation induces a �-opioid re-
ceptor internalization in the medial preoptic nucleus,
leading to full expression of sexual receptivity. Within
this system, the membrane-associated estrogen recep-
tor-� and the mGlu1� receptor directly interact in me-
diating the action of estradiol on �-opioid receptors and,
therefore, on female sexual behavior (Dewing et al.,
2007).

Given the intense expression of mGlu1 receptors in
the hypothalamic suprachiasmatic nucleus and the im-
portance of glutamate as a transmitter inducing phase
changes in circadian rhythms (Mick et al., 1995; Ebling,
1996), mGlu1 receptors may play an important role in
long-term changes in circadian clock function modulat-
ing the activity of suprachiasmatic neurons receiving
retinal glutamatergic inputs. Indeed, translation of
clock rhythmicity into neural firing in the suprachias-
matic nucleus was shown to require mGlu1-PLC�4 sig-
naling (Park et al., 2003).

A recent report highlights the role of mGlu1 and
mGlu5 receptors in modulating the activity of hypotha-
lamic neurons containing melanin-concentrating hor-
mone, which are involved in the regulation of food intake
and energy metabolism. In hypothalamic slices, the com-
bined activation of mGlu1 and mGlu5 receptors by 3,5-
DHPG increases the activity of melanin-concentrating
hormone neurons by multiple pre- and postsynaptic
mechanisms (Huang and van den Pol, 2007), which in-
volve long-lasting enhancement of NMDA responses and
the activation of the Na�/Ca2� exchanger. Therefore,
mGlu1 (or mGlu5) receptor antagonists may have a po-
tential role in the treatment of obesity.

3. Distribution and Role of Metabotropic Glutamate 1
Receptors in the Thalamus. The thalamus plays an im-
portant role in the processing of sensory information to

the cerebral cortex. In particular, the ventrobasal com-
plex is critically involved in both nociception and pain.

Thalamic relay nuclei express high levels of mGlu1
receptor mRNA and protein (Martin et al., 1992; Shige-
moto et al., 1992; Petralia et al., 1997), mostly repre-
sented by mGlu1� or mGlu1� receptor variants (Ber-
thele et al., 1998). mGlu1� receptors seem to be localized
predominantly postsynaptically to corticothalamic fibers
(Godwin et al., 1996; Vidnyanszky et al., 1996). Activa-
tion of mGlu1 receptors in thalamic relay nuclei causes
a slow depolarizing response associated with an increase
in membrane resistance, probably mediated by potas-
sium channels (McCormick and von Krosigk, 1992;
Turner and Salt, 2000) and may initiate a slow oscilla-
tion of thalamic neurons (Hughes et al., 2002). The gen-
eration of such oscillations depends on cortical activity
and would regulate sleep patterns in vivo (Hughes et al.,
2002).

Thalamic responses to sensory stimuli are dependent
on mGlu1 receptor activation as mGlu1 antagonists re-
duce these responses (Salt and Turner, 1998; Rivadulla
et al., 2002). In the ventrobasal complex, stimulation of
mGlu1 receptors potentiate both AMPA and NMDA re-
sponses (Salt and Binns, 2000); hence, when the activa-
tion of mGlu1 receptors in the perisynaptic area of ven-
trobasal neurons is achieved by sustained activity of
corticothalamic inputs, it would be able to exert a pro-
found influence on ionotropic receptor-mediated re-
sponses (Salt, 2002). Intrathalamic injection of group I
agonists enhances inflammatory pain behavior, whereas
mGlu1 antagonists or gene targeting deletion of its pri-
mary intracellular effector PLC�4 attenuates nocicep-
tive behavior in the second phase of inflammatory pain
induced by formalin injection (Miyata et al., 2003).
These findings, therefore, indicate an important role for
mGlu1 receptors for inflammatory pain processing at
the supraspinal level.

4. Distribution and Role of Metabotropic Glutamate 1
Receptors in the Basal Ganglia. Behavioral studies com-
bined with functional neuroanatomical mapping, such
as 2-deoxyglucose uptake or cFos immunohistochemis-
try, have shown that activation of group I mGlus in the
basal ganglia induces a selective activation of the “indi-
rect” pathway and thereby increases overall activity at
the output nuclei (Kaatz and Albin, 1995; Kearney et al.,
1997).

In the basal ganglia, mGlu1 receptors are expressed in
all four principal nuclei, namely the caudate/putamen or
striatum, globus pallidus, subthalamic nucleus, and
substantia nigra (Shigemoto et al., 1992; Testa et al.,
1994). These nuclei are highly interconnected and form
a circuit that integrates motor signals originating from
the cerebral cortex with postural inputs originating from
the periphery. The neostriatum is the major input sta-
tion of the basal ganglia and receives inter alia gluta-
matergic inputs from the cerebral cortex and thalamus
and dopaminergic inputs from the pars compacta of the
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substantia nigra. There are at least four major types
of neurons in the caudate/putamen: medium spiny
GABAergic projection neurons, fast-spiking parvalbu-
min-containing GABAergic interneurons, burst spiking
NADPH-diaphorase/somatostatin-positive GABAergic in-
terneurons, and large aspiny cholinergic interneurons.
Medium spiny neurons can be subdivided into two main
subclasses based on their projections and expression of
dopamine receptors or neuropeptides: 1) neurons ex-
pressing D2 dopamine receptors and enkephalin, which
project to the globus pallidus; and 2) neurons expressing
D1 dopamine receptors and substance P, which project
to the internal globus pallidus and pars reticulata of the
substantia nigra (reviewed in Conn et al., 2005).

Low to moderate expression of mGlu1 mRNA is found
in almost all neurons (Shigemoto et al., 1992; Testa et
al., 1994). This expression is confirmed by detection of
the mGlu1-�Gal fusion protein in mGlu1-expressing
cells of mice with gene-targeted mutation of the mGlu1
receptor (Conquet et al., 1994; Ferraguti et al., 1998). In
situ hybridization with oligonucleotide probes specific
for the different mGlu1 isoforms showed that striatal
neurons express mainly the transcripts for mGlu1� and
mGlu1� receptor variants (Berthele et al., 1998; Kosin-
ski et al., 1998). Neurons containing substance P express
significantly higher levels of mGlu1 mRNA (detected
with a pan-mGlu1 probe) than those of other striatal
neurons (Kerner et al., 1997). Immunohistochemical
analysis with antibodies raised against the N-terminal
domain of mGlu1 receptors shows predominant labeling
not only of the neuropil but also of scattered neuronal
somata that may represent striatal interneurons (Fo-
tuhi et al., 1994; Ferraguti et al., 1998; Kosinski et al.,
1998).

At the ultrastructural level, only mGlu1� immunola-
beling has been analyzed in detail. Immunoreactivity
was found primarily in striatal postsynaptic elements,
such as somata, dendrites, and spines of both projection
cells and interneurons and also in axon terminals (Pa-
quet and Smith, 2003). Most of mGlu1� labeling is peri-
synaptic to asymmetric corticostriatal and thalamostria-
tal axospinous synapses, although labeling is also
observed in the main body of some axodendritic symmet-
ric synapses (Paquet and Smith, 2003). Immunometal
particles corresponding to mGlu1� receptors were addi-
tionally reported at extrasynaptic locations either on the
plasma membrane or associated with intracellular or-
ganelles, such as the endoplasmic reticulum, Golgi ap-
paratus, and spine apparatus (Paquet and Smith, 2003).
Axon terminals labeled for mGlu1� were reported to
form mostly asymmetric synapses and to be present in
approximately 50% of thalamostriatal terminals, al-
though a small population of cortical and nigral boutons
also seemed to possess presynaptic mGlu1� receptors
(Paquet and Smith, 2003). A possible caveat for this
presynaptic labeling is, however, the location of the im-
munometal particles, always depicted inside the termi-

nals instead of being associated with the plasma mem-
brane of the bouton, as would be expected for an integral
membrane receptor protein. Glial processes immunola-
beled for mGlu1� receptor were also reported (Paquet
and Smith, 2003).

Several studies have shown that group I mGlu recep-
tors influence the efficacy of synaptic transmission in
the striatum (for review, see Gubellini et al., 2004). In
particular, mGlu1 receptors are involved in the induc-
tion of LTD at corticostriatal synapses (Gubellini et al.,
2001; Sung et al., 2001) through a mechanism that in-
volves the regulation of intracellular Ca2� levels (Cala-
bresi et al., 1994) and the activation of PLC, IP3/DAG,
and VSCCs (Fagni et al., 2000). At the same synapses,
mGlu1 cooperates with mGlu5 for the induction but not
for the maintenance of LTP (Gubellini et al., 2003).
Long-term changes in synaptic efficacy (such as LTP and
LTD) in the striatum underlie motor learning and “habit
memory,” and the flexibility of these changes allows
motor habits to cope with environmental changes. Dis-
ruption of these mechanisms contributes to the onset of
involuntary movements in Huntington’s disease and
other disorders (Conn et al., 2005).

Among striatal interneurons, virtually all parvalbu-
min-expressing cells were reported to coexpress mGlu1�
(Kerner et al., 1997; Tallaksen-Greene et al., 1998).
Likewise, a high percentage of the large aspiny cholin-
ergic interneurons contained mGlu1� immunoreactivity
(Kerner et al., 1997; Tallaksen-Greene et al., 1998), al-
though in a different study in which single-cell reverse
transcriptase-polymerase chain reaction was used, only
�25% were found to be positive (Bell et al., 2002). Ap-
proximately half of the somatostatin-positive interneu-
rons also display mGlu1� receptor immunoreactivity
(Tallaksen-Greene et al., 1998; Nakamura et al., 2004).
Data on the coexpression of mGlu5 with mGlu1 recep-
tors in striatal interneurons are contradictory (Testa et
al., 1995; Kerner et al., 1997; Tallaksen-Greene et al.,
1998; Bell et al., 2002).

Several studies have investigated the function of
group I mGlus in striatal cholinergic interneurons. Ap-
plication of 3,5-DHPG produces a reversible membrane
depolarization mediated by K� conductances and en-
hances the release of acetylcholine (Takeshita et al.,
1996; Calabresi et al., 1999; Pisani et al., 2000; Marti et
al., 2001; Pisani et al., 2001). Striatal cholinergic inter-
neurons fire tonically at a frequency of 2 to 10 Hz in
response to glutamatergic inputs, which arise from the
nucleus parafascicularis of the thalamus and to a lesser
extent from the cortex. These interneurons give rise to
the main cholinergic innervation of the striatum and
exert powerful modulatory control over projection neu-
rons. The increased excitability of the cholinergic inter-
neurons may, therefore, contribute to the overall effect
of mGlu1 receptors in the basal ganglia motor circuits
(see section VII.B).
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Activation of group I mGlu receptors has also been
shown to mediate presynaptic effects on both GABA
and dopamine release in the striatum (Verma and
Moghaddam, 1998; Bruton et al., 1999; Battaglia et al.,
2001; Zhang and Sulzer, 2003). Zhang and Sulzer (2003)
have shown that activation of mGlu1 receptors by glu-
tamate spilled over from corticostriatal synapses after
high-frequency stimulation inhibits DA release from ni-
grostriatal terminals (Zhang and Sulzer, 2003). This
regulation of neurotransmitter release reproposes the
controversial issue of presynaptic mGlu1 receptors in
striatum. In our opinion, there is no compelling evidence
for a presynaptic localization of mGlu1� receptors de-
spite several reports. However, the fact that the regula-
tion of neurotransmitter release is mediated by one of
the short mGlu1 isoforms (e.g., mGlu1� or -1�) targeted
to presynaptic terminals cannot be excluded.

Projection GABAergic neurons of the neostriatum
send signals to the output nuclei of the basal ganglia
(i.e., the internal globus pallidus and the pars reticulata
of the substantia nigra) through “direct” and “indirect”
pathways. The direct pathway exerts a powerful inhibi-
tion on the output nuclei and is activated by striatal D1
receptors. The indirect pathway includes the external
globus pallidus and the subthalamic nucleus and stim-
ulates the output nuclei. Activation of D2 receptors by
nigrostriatal dopamine inhibits the indirect pathway.

The external globus pallidus is composed of GABAer-
gic neurons that receive a dense inhibitory input from
the striatum and project to the subthalamic nucleus. In
the rodent globus pallidus, approximately 50% of neu-
rons express moderate to high levels of mGlu1 receptor
mRNA (Testa et al., 1994). These neurons express pri-
marily the mGlu1� isoform (Berthele et al., 1998; Testa
et al., 1998) and have been identified on the basis of
functional and morphological criteria as type II neurons
(Poisik et al., 2003). Dendrites of pallidal neurons are
innervated predominantly by striatal GABAergic termi-
nals, forming symmetric synapses intermingled with a
few glutamatergic boutons arising from the subthalamic
nucleus. At the electron microscopic level, localization of
mGlu1� receptors in both rat and monkey is detected
exclusively in postsynaptic elements (Hanson and
Smith, 1999). The subsynaptic distribution of mGlu1�
receptors reveals a predominant perisynaptic location,
which is associated with asymmetric as well as symmet-
ric synapses formed by striatal terminals (Hanson and
Smith, 1999). However, in the symmetric synapses, im-
munometal particles visualizing mGlu1� receptors are
also found in the main body of the postsynaptic special-
ization (Hanson and Smith, 1999). The presence of
mGlu1� in symmetric GABAergic synapses raises the
question of the source of glutamate. A widely accepted
view is that mGlu1 receptors at these synapses are
activated by glutamate spilled over from the cleft of
neighboring glutamatergic synapses. However, given
the relative low number of glutamatergic synapses

present on pallidal dendrites, other possibilities, which
include nonsynaptic release of glutamate from astro-
cytes (Araque et al., 1999) or dendrites (Duguid et al.,
2007; Shin et al., 2008) and corelease of GABA and
glutamate from the same terminal, should be considered.

Activation of group I mGlu receptors in pallidal neu-
rons produces inhibition of N- and P-type Ca2� conduc-
tances (Stefani et al., 1998) and a direct membrane
depolarization, which is selectively mediated by the ac-
tivation of a nonspecific cationic conductance (Poisik et
al., 2003). Pharmacological blockade of mGlu5 receptors
amplifies the depolarization mediated by mGlu1 recep-
tors by limiting a cross-desensitization between mGlu1
and mGlu5 receptors (Poisik et al., 2003).

The subthalamic nucleus receives major afferents
from the external globus pallidus, the motor cortex, and
the pedunculopontine nucleus and sends glutamatergic
projections to the globus pallidus and substantia nigra.
Hyperactivity of glutamatergic neurons of the subtha-
lamic nucleus produces bradykinesia, one of the hall-
mark features of Parkinson’s disease. Moderate levels of
mGlu1 mRNA (Testa et al., 1998) and protein (Fotuhi et
al., 1994) have been observed in the rat subthalamic
nucleus. The major mGlu1 isoform in this nucleus seems
to be mGlu1� (Martin et al., 1992; Testa et al., 1998). At
the electron microscopic level mGlu1� immunoreactivity
in the rat and monkey subthalamic nucleus is mainly
associated with dendritic processes, although immuno-
labeled axons and glial processes are also reported
(Awad et al., 2000; Wang et al., 2000b; Kuwajima et al.,
2004). Kuwajima et al. (2004) reported that immunogold
labeling for mGlu1� receptor in the monkey subthalamic
nucleus is two-thirds intracellular and one-third ap-
posed to the plasma membrane. The membrane-bound
immunoparticles are mostly associated with postsynap-
tic specializations in which they are found perisynapti-
cally at both symmetric and asymmetric synapses (Ku-
wajima et al., 2004). Similar to that in the striatum and
globus pallidus, the localization of mGlu1� receptors in
symmetric synapses of subthalamic neurons renews the
problem of the source of glutamate at these GABAergic
synapses. In this respect, it is noteworthy that terminals
from the external globus pallidus contain significantly
more immunoreactivity for glutamate than do striato-
pallidal terminals (Shink and Smith, 1995). Although
there is no direct evidence for a corelease of glutamate
and GABA from pallidal terminals in the subthalamic
nucleus, this remains a plausible possibility.

The selective group I mGlu receptor agonist 3,5-
DHPG induces a robust depolarization of subthalamic
neurons that depends on the inhibition of a leak K�

current and is mediated by mGlu5 receptors (Awad et
al., 2000). On the other hand, activation of mGlu1 re-
ceptors in subthalamic neurons inhibits glutamatergic
transmission through a presynaptic mechanism (Awad-
Granko and Conn, 2001). Although there is evidence for
presynaptic mGlu1� receptor labeling in the subtha-
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lamic nucleus (Awad et al., 2000; Kuwajima et al., 2004),
inhibition of glutamate release may follow the activation
of postsynaptic mGlu1 receptors with an ensuing forma-
tion of endocannabinoids, which, acting as retrograde
messengers, would activate presynaptic type 1 cannabi-
noid (CB1) receptors (Maejima et al., 2001; Varma et al.,
2001).

The substantia nigra is composed of two structurally
and functionally different subdivisions, the pars reticu-
lata (SNr) and pars compacta (SNc), and gives rise to the
major output projections from the basal ganglia. Expres-
sion of mGlu1 mRNA is high in both SNr and SNc
neurons (Shigemoto et al., 1992; Testa et al., 1994; Ko-
sinski et al., 1998) and consists mainly of the mGlu1�
and/or mGlu1� isoforms (Berthele et al., 1998; Kosinski
et al., 1998). In the SNc, expression of mGlu1 receptors
largely predominates over the expression of mGlu5 re-
ceptors (Shigemoto and Mizuno, 2000). In situ hybrid-
ization analysis suggests that in the SNc the predomi-
nant form is mGlu1� (Berthele et al., 1998; Kosinski et
al., 1998), although this suggestion remains to be con-
firmed at the protein level.

Neurons of the SNr receive glutamatergic projections
from the subthalamic nucleus as well as inhibitory
GABAergic projections from the globus pallidus and stri-
atum. These neurons possess high mGlu1 and mGlu1�
immunoreactivity mainly in their dendrites (Martin et
al., 1992; Fotuhi et al., 1994; Kosinski et al., 1998; Yung,
1998). In the SNc, DAergic neurons are intensely immu-
noreactive for mGlu1 in their somatodendritic domain,
but they do not display immunolabeling for mGlu1�
(Fotuhi et al., 1994; Kosinski et al., 1998; Testa et al.,
1998; Yung, 1998). Conversely, in monkeys, DAergic
neurons in the ventral component of SNc express
mGlu1� (Hubert et al., 2001; Kaneda et al., 2003). The
lack of mGlu1� immunostaining in rat DAergic neurons
of the SNc is quite puzzling, given the relatively high
abundance of mGlu1� mRNA (Berthele et al., 1998; Ko-
sinski et al., 1998). There are at present no explanations
for these contrasting results.

The subsynaptic distribution of mGlu1� receptors in
both the SNr and SNc seems to be highly similar to that
of the other components of the basal ganglia with a
predominantly perisynaptic location in asymmetric syn-
apses and intrasynaptic location in symmetric synapses
established by GABAergic striatal terminals (Hubert et
al., 2001; Marino et al., 2001). Activation of mGlu1 re-
ceptors in SNr GABAergic neurons produces a direct
robust postsynaptic depolarization accompanied by a de-
crease in a leak membrane K� conductance sensitive to
tetraethylammonium (Marino et al., 2001). Because the
subthalamic nucleus gives rise to the main glutamater-
gic input to SNr GABAergic neurons, it is likely that the
primary source of glutamate acting on mGlu1 is released
from subthalamic afferents. In addition to well estab-
lished postsynaptic localization of mGlu1 receptors in
neurons of the SNr, substantial anatomical and func-

tional evidence suggests the presence of mGlu1� within
axon terminals (Hubert et al., 2001; Marino et al., 2001;
Wittmann et al., 2001). According to Hubert et al.
(2001), mGlu1�-containing presynaptic terminals are
found exclusively in symmetric synapses, whereas Witt-
mann et al. (2001) described mGlu1� immunoreactivity
in small unmyelinated axon and terminals forming
asymmetric synapses. Moreover, activation of mGlu1
receptors in SNr GABAergic neurons is shown to reduce
either EPSCs (Wittmann et al., 2001), or, in combination
with mGlu5, inhibitory postsynaptic currents (IPSCs)
(Marino et al., 2001) through presynaptic mechanisms.
Once again, it is possible that some functional effects are
mediated by postsynaptic mGlu1 receptors through the
formation of endocannabinoids (see section VI.B.5).

In DAergic neurons of the SNc, glutamate induces
biphasic responses characterized by an initial hyperpo-
larization followed by a slow depolarization, which are
mimicked by group I mGlu agonists (Mercuri et al.,
1993; Meltzer et al., 1997; Shen and Johnson, 1997;
Fiorillo and Williams, 1998; Guatteo et al., 1999; Katay-
ama et al., 2003). The glutamate-induced hyperpolariza-
tion and depolarization were accompanied by an inhibi-
tion and a robust increase of spontaneous firing,
respectively (Katayama et al., 2003). The depolarization
seemed to require a higher frequency of stimulation
than the hyperpolarization (Fiorillo and Williams,
1998). The hyperpolarization is, at least partially, medi-
ated by mGlu1 and dependent on a Ca2�-activated K�

conductance that Fiorillo and Williams (1998) reported
as being apamin-sensitive, whereas Katayama et al.
(2003) found it insensitive to both apamin and iberio-
toxin (Katayama et al., 2003). The hyperpolarization
generated by the activation of mGlu1 receptors induces
a transient pause in the spontaneous firing of DA neu-
rons (Morikawa et al., 2003). Serotonin depresses
mGlu1-mediated IPSCs through the stimulation of
5-HT2A and 5-HT4 receptors, which decreases the intra-
cellular Ca2� mobilization triggered by mGlu1 receptors
(Paolucci et al., 2003). The depression of mGlu1-medi-
ated IPSCs by serotonin would exert a facilitatory con-
trol on the activity of DA neurons in response to short,
high-frequency trains of stimulation of glutamatergic
afferents. The slow depolarization mediated by mGlu1
receptors in DAergic neurons is independent from Ca2�

mobilization and requires tyrosine phosphorylation
(Guatteo et al., 1999; Tozzi et al., 2001) and activation of
a TRP channel (Tozzi et al., 2003).

Given the wide distribution and multiple functions of
mGlu1 receptors in the basal ganglia, it is difficult to
predict the net effect of mGlu1 receptor ligands on the
basal ganglia motor circuit. It has been suggested that
mGlu1 receptor antagonists may have antiparkinsonian
effects, particularly when combined with mGlu5 recep-
tor antagonists (Conn et al., 2005).

5. Distribution and Role of Metabotropic Glutamate 1
Receptors in the Hippocampus. In the hippocampal for-
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mation, mGlu1 receptors have been implicated in a va-
riety of physiological responses to glutamate, which in-
clude modulation of synaptic transmission and plasticity
as well as neuronal excitability and synchronization (for
review, see Anwyl, 1999; Bortolotto and Collingridge,
1999). However, for some of these functions the precise
role of mGlu1 receptors has been a matter of intense
controversial debate. For instance, the inhibition of LTP
in the CA1 Schaffer collateral-commissural pathway by
the antagonist MCPG (Bashir et al., 1993) has been
debated for years with several authors confirming this
finding (Bortolotto et al., 1994; Brown et al., 1994; Izumi
and Zorumski, 1994; Richter-Levin et al., 1994; Little et
al., 1995) and others failing to confirm it (Chinestra et
al., 1993; Izumi and Zorumski, 1994; Manzoni et al.,
1994; Selig et al., 1995; Thomas and O’Dell, 1995; Mar-
tin and Morris, 1997). A clue to resolving this contro-
versy was that the activation of group I mGlu receptors
before LTP could set an input-specific “molecular
switch” (Bortolotto et al., 1994), which would negate the
need for further activation of mGlu receptors for the
induction of LTP (Bortolotto and Collingridge, 1999).
Once again, several groups failed to find experimental
evidence for this molecular switch hypothesis (Selig et
al., 1995; Thomas and O’Dell, 1995; Martin and Morris,
1997). Later, the effect of MCPG on LTP was ascribed to
a novel unidentified mGlu receptor (Bortolotto and Col-
lingridge, 1999). Similar discrepancies were also ob-
served for the blocking of LTP induction by other
phenylglycine antagonists (Manahan-Vaughan and Rey-
mann, 1997; Breakwell et al., 1998; Fitzjohn et al., 1998;
Manahan-Vaughan et al., 1998; McCaffery et al., 1998).
LTP induction in CA1 was also controversial in mice
lacking mGlu1, as several studies found it to be unaf-
fected (Conquet et al., 1994; McCaffery et al., 1998),
whereas a separate study using a different mGlu1 KO
strain reported a 50% reduction in LTP (Aiba et al.,
1994a). This marked reduction of LTP in CA1, however,
has been difficult to reconcile with the available anatom-
ical data on mGlu1 receptors, as no specific labeling was
ever detected at Schaffer collateral-commissural excita-
tory synapses.

The role of mGlu1 in the induction of LTP at mossy
fiber synapses, a distinct form of plasticity fully inde-
pendent of NMDA receptors, is also characterized by
contradictory views. MCPG was shown to block the in-
duction of mossy fiber LTP but not of post-tetanic poten-
tiation (Bashir et al., 1993; Fitzjohn et al., 1998; but see
Hsia et al., 1995). A small deficit in mossy fiber LTP was
also reported in mice lacking mGlu1 (Conquet et al.,
1994), but this was not confirmed in a subsequent study
(Hsia et al., 1995).

There is also compelling evidence that mGlu1 is in-
volved in hippocampal LTD, although again this issue
has not been without controversy. Two forms of LTD
seem to be present in the hippocampus, one that is
NMDA-dependent and mGlu-independent and one that

can be blocked by group I mGlu receptor antagonists and
is NMDA-independent (Oliet et al., 1997). Neyman and
Manahan-Vaughan (2008) have shown in rat hippocam-
pal slices that antagonism of mGlu1 receptors impairs
both the induction and late phases of LTD in CA1. How-
ever, these effects occurred only when receptor antago-
nism took place before stimulation.

The long-lasting disputes concerning the role of
mGlu1 receptor in synaptic plasticity in hippocampus
may have been biased by the limited selectivity of the
compounds used in these studies or the specific experi-
mental protocols (Wilsch et al., 1998; Neyman and
Manahan-Vaughan, 2008). The recent availability of
subtype-specific and potent drugs may soon clarify these
controversial issues.

In the hippocampus, transcripts for mGlu1 receptors
are prominently expressed in dentate granule cells,
CA2–CA3 pyramidal neurons, and CA1–CA3 interneu-
rons of stratum oriens/alveus (Shigemoto et al., 1992). In
addition, moderate to weak labeling is found in scattered
interneurons in all laminae of CA1–CA3 and in CA1
pyramidal cells (Shigemoto et al., 1992). A clear differ-
ential distribution of the mRNA for mGlu1 receptor
splice variants occurs in the hippocampus (Berthele et
al., 1998) with mGlu1� transcripts that are restricted to
interneurons, whereas mGlu1� and mGlu1� receptors
are expressed in both interneurons and principal cells,
in particular of the CA3 region and dentate gyrus (Ber-
thele et al., 1998). Weak mRNA expression of both
mGlu1� and mGlu1� receptors is also detected in CA1
pyramidal cells (Berthele et al., 1998). Immunolabeling
obtained with pan-mGlu1- or receptor splice variant-
specific antibodies is in good agreement with in situ
hybridization data, suggesting a largely postsynaptic
localization of the receptors (Martin et al., 1992; Baude
et al., 1993; Shigemoto et al., 1997; Ferraguti et al.,
1998). Also at the protein level, mGlu1� receptors are
only expressed by nonprincipal cells (Ferraguti et al.,
2004), whereas mGlu1� receptors are enriched in both
pyramidal cells and interneurons of the CA3 area but
are undetectable in the CA1 area (Ferraguti et al., 1998).

Anatomical and physiological data have indicated the
presence of mGlu1 in several distinct classes of hip-
pocampal interneurons. In the hippocampus proper, the
mGlu1� receptor is particularly enriched in somatosta-
tin-containing interneurons of the CA1 stratum oriens-
alveus (Baude et al., 1993; Hampson et al., 1994; Kerner
et al., 1997; Yanovsky et al., 1997; Ferraguti et al.,
2004). Scattered interneurons immunopositive for
mGlu1� can also be observed in all strata of both CA1
and CA3, as well as in the hilus (Martin et al., 1992;
Baude et al., 1993; Lujan et al., 1996; Shigemoto et al.,
1997). At least two populations of somatostatin-immu-
nopositive interneurons, namely oriens-lacunosum mo-
leculare (O-LM) and oriens-bistratified (O-Bi) cells,
which have a distinct laminar axonal pattern (McBain et
al., 1994; Losonczy et al., 2002) are present in the CA1
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hippocampal region. Interneurons intensely labeled for
mGlu1� belong primarily to the O-LM interneuron class
(Ferraguti et al., 2004), which selectively innervates the
most distal part of the pyramidal cell dendritic tree in
conjunction with entorhinal and thalamic afferents
(Baude et al., 1993; McBain et al., 1994). A subpopula-
tion of O-Bi interneurons also expresses mGlu1� recep-
tors, often in combination with the calcium-binding pro-
tein calbindin (van Hooft et al., 2000; Ferraguti et al.,
2004). Four additional mGlu1�-immunopositive types of
hippocampal interneuron have been identified, which
project to distinct laminae and cell types; these include
the cholecystokinin-positive Schaffer collateral-associ-
ated cells and the interneuron-selective (IS) interneu-
rons (Ferraguti et al., 2004; Boscia et al., 2008). This
latter class of interneurons selectively targets the soma
and/or dendrites of other interneurons and is composed
of three distinct groups differing in their connectivity
and expression of the vasoactive intestinal polypeptide
and/or calretinin (Acsády et al., 1996). All three reported
classes of IS interneurons express mGlu1� (Ferraguti et
al., 2004).

At present, little is known about the differences in the
glutamatergic activation of specific types of hippocampal
interneuron and, in particular, which physiologically
relevant conditions produce activation of mGlu1�-posi-
tive neurons. Several types of interneuron are differen-
tially affected by the in vitro activation of group I mGlu
receptors (McBain et al., 1994; Woodhall et al., 1999; van
Hooft et al., 2000), which may thus influence hippocam-
pal function in multiple interneuron-specific ways. Be-
cause of its peri- and extrasynaptic location (Baude et
al., 1993; Nusser et al., 1994; Lujan et al., 1996),
mGlu1� is expected to be strongly activated during pop-
ulation bursts of pyramidal cells, when glutamate in-
creases in the extracellular space. The most prominent
population burst occurs during sharp waves, a phenom-
enon that represents synchronization across the hip-
pocampal-cortical loop (Csicsvari et al., 2000). Hip-
pocampal interneurons also participate in both � and �
frequency rhythmic activity (Cobb et al., 1995; Buzsáki,
2002). Such rhythmic activity may arise through several
different mechanisms, each probably involving distinct
subtypes of interneurons. Agonists of group I mGlu re-
ceptors can evoke slow oscillatory inward currents and
rises in intracellular Ca2� in subsets of CA1 interneu-
rons (McBain et al., 1994; Carmant et al., 1997;
Woodhall et al., 1999; van Hooft et al., 2000). The mGlu-
induced inward currents are large in O-LM cells and
small in calbindin-positive interneurons as well as in
interneurons near stratum lacunosum-moleculare
(McBain et al., 1994; Woodhall et al., 1999; van Hooft et
al., 2000). In O-LM cells, dendritic Ca2� signals seem to
be highly heterogeneous and dependent on specific mi-
crodomains of a given cell, suggesting differential in-
volvement of synaptic and extrasynaptic mGlu1 recep-
tors (Topolnik et al., 2005). EPSCs mediated by mGlu1

in oriens-alveus interneurons may result from activa-
tion of nonselective cation channels (Topolnik et al.,
2005), although the involvement of VSCCs has also been
proposed (Huang et al., 2004). Rhythmic action potential
firing is found only in O-LM cells and in a fraction of
calbindin-immunopositive interneurons (van Hooft et
al., 2000; but see McBain et al., 1994), and it seems to be
mediated almost exclusively by mGlu1 receptors (van
Hooft et al., 2000). Thus, it is possible that mGlu1�
receptors promote oscillatory activity also at physiolog-
ically relevant frequencies in vivo.

Synchronization may enhance cooperativity in neuro-
nal networks and may generate synaptic potentiation or
depression (Singer, 1993). Perez et al. (2001) elicited
LTP by � burst stimulation associated with postsynaptic
depolarization in oriens-alveus interneurons but not in
interneurons in strata radiatum or lacunosum-molecu-
lare. Evoking LTP in oriens-alveus interneurons, in
those with axonal projections to both stratum lacuno-
sum-moleculare (O-LM cells) and strata oriens and ra-
diatum (O-Bi cells), requires the activation of mGlu1
and is NMDA receptor-independent (Perez et al., 2001;
Lapointe et al., 2004). The effectiveness of � burst stim-
ulation suggests that during hippocampal � activity the
inputs from rhythmically active pyramidal cells, such as
place cells, are potentiated and the activated O-LM in-
terneurons may sustain rhythmic hyperpolarization of
the distal pyramidal dendrites assisting in the mainte-
nance of the efficacy of the entorhinal input (Losonczy et
al., 2002). Furthermore, mGlu1 receptors on oriens
alveus interneurons produce a long-lasting increase in
polysynaptic IPSC amplitude in pyramidal cells, sug-
gesting that mGlu1-dependent LTP at excitatory syn-
apses on these interneurons may regulate pyramidal cell
inhibition (Lapointe et al., 2004).

The GABAergic innervation provided by IS cells to
other hippocampal interneurons gives rise to a complex
interaction among GABAergic neurons. Group I mGlu
agonists are effective on some interneurons in the strata
radiatum and lacunosum-moleculare, probably by means
of mGlu1 receptors (Ouardouz and Lacaille, 1995;
Woodhall et al., 1999; Perez et al., 2001). Although IS
interneurons express a much lower concentration of
mGlu1� than O-LM cells, their highly specific relation-
ship to other interneurons could amplify the effect of
mGlu1 receptor activation as each IS GABAergic neuron
innervates thousands of pyramidal cells.

It is noteworthy that CA1 pyramidal neurons show a
variety of mGlu1 receptor-mediated responses such as
depolarization, an increase in the frequency of sponta-
neous IPSPs, and a depression of the slow hyperpolar-
ization (Mannaioni et al., 2001; Ireland and Abraham,
2002; Ireland et al., 2004; Rae and Irving, 2004), despite
the fact that no immunohistochemical study has re-
vealed expression of mGlu1 receptors in these cells (Lu-
jan et al., 1996; Shigemoto et al., 1997; Ferraguti et al.,
1998). However, it should be remembered that accumu-
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lation of the mGlu1-�Gal fusion protein in the somata of
CA1 pyramidal neurons was detected in mGlu1 KO
mice, suggesting the expression of at least one receptor
variant by these cells (Ferraguti et al., 1998). A possible
explanation that could settle the discrepancies between
functional and anatomical studies is the formation of
heterodimers between a short form of mGlu1 receptors
(perhaps mGlu1�) with either mGlu5 or other GPCRs.
The generation in CA1 neurons of enhanced Ca2� sig-
nals and depolarization by mGlu1 stimulation may rep-
resent a means of coincident detection that could play a
role in synaptic plasticity.

In addition to the reported postsynaptic effects in both
interneurons and pyramidal cells, mGlu1 receptors in-
fluence presynaptic functions, producing a reversible
suppression of both excitatory (termed depolarization-
induced suppression of excitation) and inhibitory (depo-
larization-induced suppression of inhibition) synaptic
transmission. For years, this type of synaptic modula-
tion could not be reconciled with the restricted localiza-
tion of mGlu1 receptors to the postsynaptic membrane.
It is now well established that the presynaptic inhibition
mediated by mGlu1 involves retrograde signaling from
the postsynaptic membrane. Upon activation of mGlu1
receptors an endogenous endocannabinoid, 2-arachido-
noyl glycerol is produced from diacylglycerol by diacyl-
glycerol lipase and released in the extracellular space
from where it reaches CB1 receptors, which in turn
cause presynaptic inhibition of transmitter release
(Maejima et al., 2001; Varma et al., 2001). This synaptic
modulation mediated by mGlu1 receptors through a ret-
rograde messenger is also expected to associate with
presynaptic regulation of Ca2� channels mediated by
presynaptic group III mGlu receptors (Millán et al.,
2002).

In the perforant path, LTP induction possesses the
same basic properties as those at Schaffer collateral
fibers; therefore, the role(s) of mGlu1 in synaptic plas-
ticity should be substantially similar. In slices of the
dentate gyrus from mGlu1 receptor KO mice, LTP is
unaltered in both the medial and lateral perforant paths
(Conquet et al., 1994); conversely, a significant reduc-
tion is observed in vivo (Bordi, 1996). Likewise, the use
of mGlu1 antagonists in vivo dose dependently impairs
LTP expression, but not LTP induction (Riedel and Rey-
mann, 1993; Naie and Manahan-Vaughan, 2005). The
reduction of LTP in the perforant path of anesthetized
mGlu1 KO mice (Bordi, 1996) is explained as being
dependent on a decreased level of feedback inhibition
operated by interneurons (Bordi et al., 1997; but see
Naie and Manahan-Vaughan, 2005), a view that could
also explain the negative results observed in vitro. In
fact, the inhibitory circuits involving mGlu1 in vivo are
probably lost in the slice preparation.

Several studies have established the involvement of
mGlu1 receptors in spatial and associative learning
(Aiba et al., 1994a; Conquet et al., 1994; Nielsen et al.,

1997; Steckler et al., 2005; Gravius et al., 2006). A crit-
ical role of mGlu1 receptors has been demonstrated for
the acquisition of hippocampally dependent trace condi-
tioning and for the enhancement of synaptic strength in
hippocampal circuits across conditioning sessions (Gil-
Sanz et al., 2008). These findings strongly support a
definitive role for mGlu1 receptors in activity-dependent
synaptic activity and plasticity underlying associative
learning (Gil-Sanz et al., 2008). Nevertheless, definitive
elucidation of how mGlu1 receptors contribute to the
neural mechanisms of associative learning is still miss-
ing. However, these effects of mGlu1 receptors may ten-
tatively be ascribed to a modulation of GABAergic trans-
mission involving hippocampal interneurons (Speed and
Dobrunz, 2008).

6. Distribution and Role of Metabotropic Glutamate 1
Receptors in the Cerebellum. In the cerebellar cortex,
PCs abundantly express mGlu1 receptors in their den-
dritic arbors, such that immunoreactivity in the molec-
ular layer is much stronger than that in any other brain
area (Fig. 4) (Martin et al., 1992; Baude et al., 1993;
Fotuhi et al., 1993). Besides PCs, almost all basket and
stellate interneurons in the molecular layer were found
to express mGlu1 receptor mRNA (Shigemoto et al.,
1992) and to be immunoreactive for mGlu1� (Baude et
al., 1993; Gorcs et al., 1993; Grandes et al., 1994). Gran-

FIG. 4. Expression of mGlu1 receptors in human brain. Top, expres-
sion of mGlu1 receptors in several human brain areas is analyzed by
using a polyclonal antibody directed to the N-terminal domain of mGlu1
receptors, common to all splice variants (Ferraguti et al., 1998). Post
mortem brain membrane extracts (40 �g) obtained from a subject with no
neurological or psychiatric illnesses were subjected to SDS-polyacryl-
amide gel electrophoresis; proteins were then transferred onto a polyvi-
nylidene difluoride membrane. The upper band corresponds to mGlu1�
receptors and the lower band to the shorter mGlu1� and/or mGlu1�
receptors. The highest expression level of mGlu1 receptors is observed in
membranes obtained from the cerebellum, followed by the ventrobasal
thalamus and neocortical areas. Bottom, because of its better efficacy, a
rabbit polyclonal antibody raised against the C-terminal domain of
mGlu1� receptors (DiaSorin, Stillwater, MN), is probed to confirm the
mGlu1� expression profile detected with the NH2-terminal antibody.
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ule cell bodies were reported to exhibit a low but detect-
able amount of mGlu1 mRNA (Shigemoto et al., 1992;
Berthele et al., 1998, 1999), whereas mGlu1 receptor
immunoreactivity is not found in these cells (Martin et
al., 1992; Grandes et al., 1994; Jaarsma et al., 1998). In
the granular layer, many Lugaro cells, unipolar brush
cells (UBCs), and some Golgi cells display mGlu1� im-
munoreactivity (Martin et al., 1992; Baude et al., 1993;
Grandes et al., 1994; Wright et al., 1996); labeling was
also reported in glomeruli (Baude et al., 1993).

A similar expression profile for the mRNAs of all main
mGlu1 splice variants has been described in the cerebel-
lum, with high levels of mGlu1�, mGlu1�, and mGlu1�
in PCs, moderate levels in stellate and basket neurons,
and weak levels in granule cells (Berthele et al., 1998).
Immunolabeling with an mGlu1� antibody confirms the
expression of the receptor protein in PCs, basket neu-
rons, and glomeruli (Grandes et al., 1994). The mRNA
expression pattern of mGlu1 receptor isoforms in human
cerebellum is similar to that seen in rat cerebellum (Lin
et al., 1997; Berthele et al., 1998, 1999).

High-resolution immunohistochemical studies have
shown that mGlu1 receptors, including mGlu1� and
mGlu1�, are selectively localized postsynaptically at the
perijunctional site of both types of excitatory inputs
received by PCs (Martin et al., 1992; Baude et al., 1993;
Nusser et al., 1994; Shigemoto et al., 1994; Petralia et
al., 1998; Mateos et al., 2000): the climbing fibers (CFs),
which originate in the inferior olive, and the parallel
fibers (PFs), which are the ascending axons of granule
cells. The PF-PC synapse is one of the most extensively
studied glutamatergic synapses and is characterized by
the lack of postsynaptic NMDA receptors. However, syn-
aptic transmission at this synapse undergoes a variety
of activity-dependent changes, including short-term
plasticity, LTP, and LTD, that are considered important
for the role of cerebellum in motor coordination and
learning (Levenes et al., 1998).

Activation of mGlu1 receptors in PCs by repetitive PF
stimulation was shown to produce an initial slow exci-
tation (or inward current) (Ito and Karachot, 1990; Cre-
pel et al., 1991; Glaum et al., 1992; Staub et al., 1992;
Batchelor and Garthwaite, 1993; Batchelor et al., 1994,
1997; Linden et al., 1994; Tempia et al., 1998., 2001).
This current is independent of the stimulation of PI
hydrolysis (Hirono et al., 1998; Tempia et al., 1998;
Canepari et al., 2001), is produced by the activation of a
nonselective cation channel (Canepari et al., 2001), re-
quires G-protein activation (Tempia et al., 1998; Cane-
pari and Ogden, 2003), and is inhibited by tyrosine phos-
phorylation (Canepari and Ogden, 2003). An additional
effect mediated by mGlu1 receptors in PCs is a small
hyperpolarization that follows the initial excitation and
depends on the activation of an inhibitory K� current
(Batchelor and Garthwaite, 1993; East and Garthwaite,
1992; Finch and Augustine, 1998; Ito and Karachot,
1990; Khodakhah and Ogden, 1995; Staub et al., 1992;

Vranesic et al., 1993). This follows the receptor-medi-
ated activation of PLC�4 with an ensuing formation of
IP3 and Ca2� release from intracellular stores (Yuzaki
and Mikoshiba, 1992; Finch and Augustine, 1998; Take-
chi et al., 1998; Hartmann et al., 2004). It is noteworthy
that Okubo et al. (2004) have shown a cooperative action
between mGlu1 and AMPA receptors in PF-induced pro-
duction of IP3. Complementary recordings from PCs in
vivo confirm the multiphasic response observed upon
mGlu1 receptor activation in vitro (Lingenhöhl et al.,
1993).

Repetitive PF stimulation evokes a complex Ca2� sig-
nal confined to the dendritic PC target region of the
activated PF. The synaptic Ca2� response consists of two
distinct components, an early response with a fast rising
phase mediated by AMPA receptors, and a delayed com-
ponent mediated by mGlu1 receptors (Gruol et al., 1996;
Finch and Augustine, 1998; Takechi et al., 1998; Hart-
mann et al., 2004). The delayed component has been
ascribed to the release of Ca2� from intracellular stores
(Takechi et al., 1998), although the influx of extracellu-
lar Ca2� through VSCCs might also have a role (Daniel
et al., 1996). The group of Nakanishi has demonstrated
that in PC dendrites mGlu1� receptors form a hetero-
meric assembly with Cav2.1, a pore-forming subunit of
P/Q-type VSCCs (Kitano et al., 2003a). Activation of
mGlu1� receptors modulates Cav2.1 in a time-depen-
dent fashion (Kitano et al., 2003a). Preactivation of
mGlu1� receptors inhibits Cav2.1 Ca2� channels in both
ligand-dependent and -independent manners, which
were mediated by coupling through PTX-sensitive
G-proteins (probably Go) and by physical coupling be-
tween the two receptors, respectively (Kitano et al.,
2003a). In contrast, a coincident stimulation of mGlu1�
receptors and Cav2.1 amplifies intracellular Ca2� in-
crease (Daniel et al., 1996; Wang et al., 2000a; Kitano et
al., 2003a). This different modulation of Cav2.1 channel
activity by mGlu1� receptors could provide a temporal
window for the regulation of intracellular Ca2� concen-
tration and integration of synaptic inputs onto PCs (Ber-
ridge, 1998; Ito, 2002; Kitano et al., 2003a).

The initial slow EPSCs observed upon activation of
mGlu1 receptors in PCs seems to be mediated by TRPC1
cation channels (Kim et al., 2003). This interaction be-
tween mGlu1 receptors and TRPC1 might be direct (Kim
et al., 2003) or mediated by Homer proteins (Brakeman
et al., 1997; Yuan et al., 2003). However, these channels
may not be the unique generator of slow EPSCs as
certain properties of this current cannot be accounted for
by TRPC (Canepari et al., 2004).

At present, the functional significance of mGlu1-
evoked slow EPSCs remains to be established, although
several hypotheses have been formulated: 1) the Ca2�

influx associated with this current could serve to replen-
ish internal stores depleted by IP3; or 2) the Ca2� and/or
Na� influx mediated by TRPC channels may engage
alternative transduction pathways, which could be in-
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volved in the release of endocannabinoids (Kim et al.,
2003).

Marked increases in mGlu1-mediated currents are
found by the concomitant application of GABA or the
GABAB receptor agonist baclofen (Hirono et al., 2001).
This amplification is specific because baclofen does not
affect AMPA-induced currents. Baclofen enhances not
only the inward currents but also the Ca2� transients
mediated by mGlu1 receptors in both proximal and dis-
tal PC dendrites.

PFs also form excitatory connections with interneu-
rons, hence eliciting GABA release at interneuron-PC
synapses. Therefore, endogenous GABA released synap-
tically from cerebellar interneurons after PF stimulation
can elicit on PCs, through the activation of postsynaptic
GABAB receptors, a profound enhancement of mGlu1-
induced slow EPSCs and a rise in Ca2� (Hirono et al.,
2001). The amplifying action of GABAB receptors on
mGlu1-mediated responses seems to be a unique prop-
erty of GABAB receptors as other G-protein-coupled re-
ceptors including serotonin, adenosine, and muscarinic
receptors are devoid of such action in PCs (Hirono et al.,
2001). GABAB receptors have also been shown to pro-
mote and to broaden the dynamic range of mGlu1-me-
diated responses in PCs (Tabata et al., 2002, 2004) in-
dependently of GABA, by means of their interaction
with extracellular Ca2� and possibly through complex-
ing with mGlu1 receptors (Tabata et al., 2004). There-
fore, GABAB receptors can function as a Ca2�-depen-
dent cofactor that constitutively enhances mGlu1-
signaling in PCs. This novel mechanism of mGlu1
sensitization may constitute an important factor for un-
derstanding the physiological basis of the unsaturated
properties of mGlu1 EPSCs (Batchelor et al., 1997; Tem-
pia et al., 1998).

Long-lasting enhancement of mGlu1-mediated re-
sponses has also been shown in PCs in culture after a
conditioning depolarization with 50 mM KCl (Minami et
al., 2003). Depolarization inhibits the internalization of
mGlu1 receptors by means of an increased expression of
Homer1a (Minami et al., 2003). All of these changes are
prevented by inhibitors of the MAPK pathway (Minami
et al., 2003).

As previously discussed for the hippocampal forma-
tion, activation of mGlu1 receptors influences presynap-
tic functions through the release of diffusible endoge-
nous endocannabinoids, which in turn act on CB1
receptors on presynaptic terminals (Maejima et al.,
2001), thus producing a reversible suppression of both
excitatory and inhibitory synaptic transmission (Con-
quet et al., 1994; Levenes et al., 2001; Brown et al., 2003;
Galante and Diana, 2004). The physiological role that
these forms of synaptic depression elicited postsynapti-
cally may have on the overall processing of synaptic
information conveyed to the cerebellar cortex is unclear;
however, a role in synaptic refinement during develop-
ment has been postulated (Maejima et al., 2001).

Conjunctive stimulation of CF and PF inputs onto PCs
has been shown to result in LTD at PF-PC synapses (Ito
and Kano, 1982). The molecular and cellular mecha-
nisms of this form of synaptic plasticity require the
activation of a signaling cascade initiated by mGlu1 and
involving PKC (Hansel et al., 2001; Gao et al., 2003).
Because the involvement of mGlu1 in LTD generation
has been reviewed recently (Kano et al., 2008), we refer
the reader to this review for a more comprehensive cov-
erage of the topic.

An mGlu1-dependent form of long-lasting synaptic
depression has been shown recently to be expressed at
PC-CF synapses (Hansel and Linden, 2000). Like PF-PC
LTD, CF-PC LTD requires, beside activation of mGlu1,
postsynaptic Ca2� elevation and PKC activation (Hansel
and Linden, 2000). Dzubay and Otis (2002) have shown
that mGlu1 receptors perisynaptic at CF-PC synapses
are activated in response to CF stimulation and, simi-
larly to those at PF-PC synapses, generate divergent
signaling cascades: one of these is characterized by slow
EPSCs independent from release of Ca2� from intracel-
lular stores and a second is linked to mobilization of
intracellular Ca2�. The similarities in mGlu1-mediated
responses between PF-PC and CF-PC synapses suggest
that in PCs, mGlu1 initiates the same intracellular
transduction program independently from its location or
presynaptic input.

An additional mechanism of regulation that seems to
operate on the activation of mGlu1 receptors involves
glutamate transporters. Inhibition of glial and neuronal
glutamate transporters enhances mGlu1-mediated EP-
SCs in PCs at both PF-PC and CF-PC synapses, thereby
facilitating the induction of LTD (Brasnjo and Otis,
2001; Dzubay and Otis, 2002; Reichelt and Knöpfel,
2002; Otis et al., 2004). An interplay between neuronal
glutamate transporters and mGlu1 receptors is further
suggested by their overlapping subcellular distribution
(Baude et al., 1993; Dehnes et al., 1998; Brasnjo and
Otis, 2001). As perisynaptic mGlu1 receptors are acti-
vated by the glutamate that escapes the clearing mech-
anisms and diffuses to the extracellular space, the ac-
tivity of glutamate transporters is critically set to
provide a threshold for the recruitment of mGlu1 recep-
tors in response to synaptic activation.

Cerebellar LTD has been hypothesized to underlie
vestibulo-ocular reflex adaptation, eye-blink classic con-
ditioning, and acquisition of motor skills (Lisberger,
1998; Mauk et al., 1998). However, how activity-depen-
dent plasticity in the cerebellar cortex actually modifies
behavior remains to be ascertained as does the role
played by mGlu1 receptors. Gene-targeted deletion of
the mGlu1 receptor impairs LTD at PF-PC synapses and
results in motor impairment and severe ataxia (Aiba et
al., 1994b; Conquet et al., 1994). However, the lack of
mGlu1 receptors in brain areas other than the cerebel-
lum complicates the interpretation of behavioral data.
In an elegant study, Ichise et al. (2000) demonstrated
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that reintroduction of mGlu1� under the control of the
L7 promoter, which selectively allows the expression of
the transgene only in PCs of mGlu1-null mice, com-
pletely rescues the disruption of cerebellar LTD and the
motor impairment. Using these rescued mice, Kishimoto
et al. (2002) examined the role of mGlu1 within and
outside PCs for the association of temporally contiguous
and discontiguous stimuli in paradigms of classic condi-
tioning. Their results show that mGlu1 receptors in PCs
are essential for normal delay eye-blink conditioning
(Kishimoto et al., 2002). Conversely, mGlu1 receptors
present in other cell types contribute to the association
of discontiguous stimuli and long-term memory forma-
tion of nonspatial hippocampus-dependent learning
(Kishimoto et al., 2002).

Compared with mGlu1 in PCs, the role of mGlu1 re-
ceptors in cerebellar interneurons has not been investi-
gated in great detail. Basket and stellate interneurons
in the molecular layer express mGlu1 receptors postsyn-
aptically in conjunction with PF terminals, and their
activation leads to a robust depolarization of these neu-
rons (Karakossian and Otis, 2004). This depolarization
triggers bursts of IPSCs in PCs (Karakossian and Otis,
2004) and may provide a phasic long-lasting inhibition of
these cells.

The granular layer of the mammalian vestibulocer-
ebellum is highly enriched in the glutamatergic UBC
interneurons. The branchlets forming the brush-like tip
of their unique dendrite establish an elaborate synaptic
junction with a single mossy fiber rosette, which evokes
upon stimulation a prolonged excitation of the UBC
(Rossi et al., 1995). UBCs receive input from the vestib-
ular ganglion and vestibular nuclei and project their
axons in the granular layer where they form a system of
intrinsic excitatory mossy fiber-like synapses with gran-
ule cells and other UBCs. These cells have been pro-
posed to exert a feed-forward excitation within the gran-
ular layer, which may amplify vestibular signals and
synchronize activity in clusters of functionally related
granule cells projecting to patches of PCs (Diño et al.,
2000; Nunzi et al., 2001). Two distinct classes of UBC
have been identified, one expressing calretinin and the
two vesicular glutamate transporters VGlut1 and -2,
whereas the other contains mGlu1 receptors (including
mGlu1�) in the somatodendritic compartment and only
VGlut1 (Jaarsma et al., 1998; Takács et al., 1999; Nunzi
et al., 2002). The localization of mGlu1� is primarily
associated with the thin appendages of UBCs and is
absent from the large postsynaptic density of giant
mossy fiber-UBC synapses (Jaarsma et al., 1998). The
two subsets of UBCs seem to have a different distribu-
tion within the mouse nodulus and to support two
largely independent microcircuits (Nunzi et al., 2002,
2003), which associate with different subsets of primary
and secondary vestibular afferents. The precise role of
mGlu1 receptors in UBC is not known. However, mGlu1
receptors may take part in the dynamic process of intra-

cellular Ca2� increase that follows mossy fiber activa-
tion (Nunzi et al., 2002).

In addition to UBCs, two other interneurons, namely
Golgi and Lugaro cells in the granular layer, display
weak mGlu1 immunoreactivity (Baude et al., 1993; Víg
et al., 2003). Lugaro cells are GABAergic interneurons
located just underneath the PC layer and exhibit a fusi-
form cell body and thick dendrites horizontally oriented
with respect to the laminar organization of the cerebel-
lar cortex. They receive predominantly inhibitory affer-
ents from PC recurrent collaterals and project their ax-
ons to the molecular layer where they contact basket
cells (Lainé and Axelrad, 1996). It has been suggested
that Lugaro cells are disinhibitory feedback interneu-
rons modulating the cerebellar output.

Among Golgi cells, only a small subpopulation ex-
presses postsynaptic mGlu1 at synapses with PF termi-
nals (Hámori et al., 1996). Application of 3,5-DHPG to
freshly dissociated Golgi cells inhibits VSCCs (Knoflach
et al., 2001b). However, this effect may be mediated by
either mGlu1 and/or mGlu5 receptors, because both re-
ceptors are found in Golgi cells (Neki et al., 1996).

The reported expression of mGlu1 receptor mRNA in
cerebellar granule cells but the lack of detectable immu-
noreactivity in these cells remains an unresolved issue.
Vetter et al. (1999) have shown functional responses to
3,5-DHPG in granule cells of rat cerebellar slices that
are probably mediated by mGlu1 receptors. We have
found a small accumulation of mGlu1-�Gal fusion pro-
tein in granule cells of mGlu1-null mice, which favors
the hypothesis that mGlu1 mRNA undergoes transla-
tion in cerebellar granule cells.

A synthesis of the role(s) of mGlu1 receptors in cere-
bellar function is at present unattainable, given its pres-
ence in many cerebellar neurons as well as at many
different synapses. Important indications have been ob-
tained regarding mGlu1 at PC-PF and PC-CF synapses
and the requirement of at least mGlu1� in LTD and
motor coordination. However, participation of the short
mGlu1 isoform in mGlu1-mediated responses remains
entirely to be elucidated. Indeed, it would be of great
interest to know whether mGlu1� or mGlu1� is able to
rescue the cerebellar phenotype exhibited by mGlu1-
null mice entirely or partially.

7. Distribution and Role of Metabotropic Glutamate 1
Receptors in the Spinal Cord. The importance of mGlu1
receptors in the processing of sensory transmission in
the spinal cord has been extensively studied, particu-
larly in view of their role in nociception.

In situ hybridization experiments performed in rat
spinal cord show diffuse labeling throughout its rostro-
caudal extent, whereas most intensely labeled neurons
are found in the ventral horn and central gray (Shige-
moto et al., 1992). The substantia gelatinosa contains
many weakly labeled neurons as do the sensory trigem-
inal nuclei (Shigemoto et al., 1992). Within the dorsal
horn, mGlu1 mRNA is distributed over laminae I
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through III and labeled cells are mainly observed in the
deeper laminae (IV–VII) and in the intermediate gray
matter (Berthele et al., 1999). Two populations of mo-
toneurons can be discriminated by either the expression
or lack of expression of mGlu1 mRNA. Motoneurons
expressing mGlu1 contain the mGlu1� receptor variant
predominantly (Berthele et al., 1999).

Expression of mGlu1� and -1� receptor proteins has
been analyzed in the rat spinal cord in several studies
(Fotuhi et al., 1993; Petralia et al., 1997; Tang and Sim,
1999; Alvarez et al., 2000). mGlu1 receptor immuno-
staining is detected rostrocaudally throughout the spi-
nal cord (Alvarez et al., 2000). Intense mGlu1� immu-
nolabeling is found in dendritic and somatic membranes
of neurons of the deep dorsal horn (lamina III–IV) and
ventral horn (lamina VI–IX). Deeper laminae (III–VI) of
the dorsal horn also contain several mGlu1�-positive
neurons and dendrites. Large lamina I neurons and
dendrites show occasional immunostaining for mGlu1�
receptors, whereas lamina II interneurons express low
levels of mGlu1� immunoreactivity (Petralia et al.,
1997; but see Tang and Sim, 1999; Alvarez et al., 2000).

Somata and dendrites of motoneurons display vari-
able mGlu1� immunoreactivity, with small to medium-
sized motoneurons showing higher levels of immuno-
staining (Alvarez et al., 2000). Some motoneuron pools
possess particularly strong immunoreactivity, such as
phrenic and pudendal motoneurons, Onuf’s ventrolat-
eral motoneurons, and motoneurons in the central cer-
vical nucleus and Clarke’s column (Alvarez et al., 2000).
Within the dorsolateral funiculus, several neurons of the
lateral spinal nucleus also display mGlu1� immunore-
activity (Alvarez et al., 2000). In the human spinal cord,
the expression pattern of mGlu1� seems similar to what
was reported in rodents (Aronica et al., 2001). Neurons
immunoreactive for mGlu1� receptors are found
throughout the dorsal horn, although only a group of
neurons in lamina X show strong mGlu1� expression
(Alvarez et al., 2000).

The physiological role of mGlu1 receptors in fast and
slow excitatory synaptic transmission in the spinal cord
is still largely uncertain. Activation of group I mGlu
receptors in motoneurons and dorsal horn neurons in-
duces transient membrane depolarizations and modu-
lates excitation meditated by ionotropic glutamate re-
ceptors (Bleakman et al., 1992; Cerne and Randic, 1992;
Jones and Headley, 1995; Ugolini et al., 1997, 1999;
Zhong et al., 2000; Neugebauer, 2002), alters spike fre-
quency accommodation, and decreases the firing thresh-
old of these neurons and/or the amplitude and duration
of afterhyperpolarizations (Cao et al., 1995; King and
Liu, 1996; Morisset and Nagy, 1996; Russo et al., 1997).
Group I mGlu receptor activation also induces rhythmic
oscillations of the membrane potential and long-term
changes in the excitability of sympathetic neurons (Sp-
answick et al., 1995; Nolan and Logan, 1998). In the
dorsal horn, these mechanisms produce hyperexcitabil-

ity to sensory stimuli that can result in allodynia, hy-
peralgesia, and sustained nociceptive transmission
(Meller et al., 1993; Neugebauer et al., 1994, 1999;
Young et al., 1994, 1995, 1997, 1998; Boxall et al., 1996;
Fisher and Coderre, 1996, 1998; Meller et al., 1996;
Budai and Larson, 1998; Stanfa and Dickenson, 1998).

Slow EPSPs evoked by group I mGlu receptors or by a
stimulus train at dorsal horn sensory neuron synapses
occur through a cooperative action of both mGlu1 and
mGlu5 receptors (Galik et al., 2008). This cooperativity
may arise from interaction between downstream intra-
cellular signaling pathways coupled to mGlu1 and
mGlu5 receptors, which are activated by the coincident
stimulation of multiple synaptic inputs onto a given
neuron (Mori and Gerber, 2002).

VII. Implication in Diseases

As described earlier, mGlu1 receptors are involved in
the regulation of neuronal excitability, synaptic plastic-
ity, synapse selection, and neurotransmitter release,
which are important for brain development and mecha-
nisms of learning and neuroprotection. Therefore, it is
not surprising that mGlu1 receptors have been impli-
cated also in the pathophysiology of several neurological
and psychiatric disorders. The repertoire of selective
compounds at these receptors has recently expanded;
thus, novel chances are offered for the development of
new therapeutically effective drugs for neuropsychiatric
diseases. In this section, we review the potential clinical
and therapeutic implications of mGlu1 receptors in some
representative disorders.

A. Cerebellar Ataxia

Gene-targeted deletion of the mGlu1 gene in mice
results in severe cerebellar motor discoordination
(ataxia) and impaired LTD (Aiba et al., 1994b; Conquet
et al., 1994). An important feature observed in mGlu1-
null mice is also a persistent multiple CF innervation of
PCs without an apparent defect in PF-PC synaptogen-
esis (Kano et al., 1997; Levenes et al., 1997). During
cerebellar development, both CF and PF synapses are
formed supernumerarily and are then dynamically mod-
ified with the resulting elimination of redundant syn-
apses. Elimination of the supernumerary CFs proceeds
in parallel with other developmental events in the cer-
ebellum, including granule cell migration, PC dendritic
growth, and PF-PC synaptogenesis (Mariani et al., 1977;
Crepel et al., 1980). In the adult cerebellum, each PC is
eventually innervated by a single CF. This one-to-one
relationship is reached by the end of the third postnatal
week and is maintained throughout life. CF-PC syn-
apses can be observed on PC somatic processes from
postnatal day 2, whereas PF-PC synapses begin forming
at postnatal days 7 to 10. The supernumerary CFs in the
cerebellum of mGlu1-null mice formed typical synapses
onto PC proximal dendrites and gave rise to EPSCs with
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fast rise times similar to CFs in wild-type animals
(Hashimoto and Kano, 2003).

The persistence of multiple CF innervation of PCs,
impaired LTD, and lack of motor coordination has been
observed in a number of mice deficient in signal trans-
duction elements downstream of mGlu1, including G�q
(Offermanns et al., 1997), PLC�4 (Kano et al., 1998),
and PKC� (Kano et al., 1995). Reinsertion in mGlu1-null
mice of mGlu1� in PCs only reverses the disruption of
synaptic plasticity (LTD) and the motor impairment and
induces normal regression of multiple CF innervation
(Ichise et al., 2000). Taken together, these results clearly
demonstrate that activation of mGlu1 and of its down-
stream intracellular signaling cascade to PKC� plays a
critical role in the maturation of the cerebellar cortex.

Although good parallelism between cerebellar motor
discoordination, multiple CF innervation of PCs, and
impaired LTD has been observed, it still remains un-
clear whether the two latter phenomena contribute to
generate the ataxia. Cerebellar motor coordination def-
icits also occur in mice deficient in the GluR�2 subunit
(Kashiwabuchi et al., 1995), which is highly enriched at
the junctional site of PF-PC synapses but not at the site
of CF-PC synapses. These animals, as for mGlu1-null
mice, show impaired LTD and persistent multiple CF
innervation, which is paralleled, however, by a nearly
50% reduction in the number of PF-PC synapses com-
pared with that in wild-type animals (Kurihara et al.,
1997). In GluR�2-null mice, CFs were shown to inner-
vate both the proximal and the distal dendrites of PCs
(Hashimoto et al., 2001). Kano and coworkers concluded
that GluR�2 is required primarily for consolidating
PF-PC synapses and restricting CFs to the proximal
dendrites, whereas the mGlu1-signaling pathway is in-
volved during cerebellar maturation in eliminating sur-
plus of CFs at the proximal dendrites (Kurihara et al.,
1997; Hashimoto et al., 2001).

The persistent innervation of PCs by multiple CFs has
been proposed to be the main causal link to the impair-
ment of motor coordination. However, autoantibodies to
the extracellular domain of mGlu1 can generate para-
neoplastic cerebellar ataxia in adult patients with
Hodgkin’s disease who had normal maturation of the
cerebellar cortex (Sillevis Smitt et al., 2000; Coesmans
et al., 2003), and when injected into the subarachnoid
space of normal mice produce a severe and reversible
ataxia (Sillevis Smitt et al., 2000). Hence, inhibition of
mGlu1 after complete maturation of the cerebellar cor-
tex is still able to produce ataxia, which may result
either from interference with the excitability and firing
rate of PCs or by prevention of the formation and main-
tenance of LTD (Coesmans et al., 2003). Nonetheless,
persistence of multiple CF innervation may still remain
an important developmental defect contributing to the
motor impairment. Disruption of LTD is more likely to
be the cause of the learning deficits associated with
mGlu1 loss of function, such as in eye-blink conditioning

(Aiba et al., 1994b; Kishimoto et al., 2002) and adapta-
tion of saccadic eye movements (Coesmans et al., 2003).

The pathophysiological mechanisms by which mGlu1
autoantibodies evoked motor coordination deficits in pa-
tients with Hodgkin’s disease remain to be demon-
strated, as these antibodies, besides affecting synaptic
transmission and plasticity, might also induce chronic
neurodegeneration with consequent PC loss and/or
changes in their dendritic arbor morphology (Coesmans
et al., 2003). Evidence for a role of mGlu1 in PC survival
and differentiation has been obtained by its pharmaco-
logical inhibition in vitro in mixed cerebellar cultures
(Mount et al., 1993, 1998; Catania et al., 2001). How-
ever, deletion of mGlu1 in mice does not produce degen-
eration of PCs, nor does it affect the formation of their
dendritic arbors (Aiba et al., 1994b; Conquet et al., 1994;
Kano et al., 1997). It is possible, of course, that the lack
of mGlu1 throughout development may have elicited
some compensatory changes.

The molecular mechanisms by which mGlu1 induces
elimination of supernumerary CTs remain to be identi-
fied as does the more general role that mGlu1 (and the
individual alternatively spliced isoforms) plays in the
critical period of maturation of the cerebellar cortex.
Studies in which mGlu1 receptors are reinserted in cell-
specific populations, such as PCs, under inducible pro-
moters will help to elucidate answers to some of these
questions.

B. Extrapyramidal Motor Dysfunctions

The recent advances in our understanding of the in-
volvement of mGlu1 receptors in the basal ganglia motor
circuit have direct implications for the elucidation of the
pathophysiological role of these receptors in basal gan-
glia disorders such as Parkinson’s disease. Parkinson’s
disease is a debilitating motor disorder characterized by
akinesia, bradykinesia, and tremor. Modulation of DA/
acetylcholine equilibrium in the striatum is still the
mainstream pharmacological rational for treating the
symptoms of this disease. However, anticholinergic and
dopamine precursors or receptor agonists are not devoid
of serious side effects, such as dyskinesias. Alternative
strategies that can help to modulate striatal DA/acetyl-
choline transmission are therefore of great interest and
potential clinical application. mGlu1 receptors are
widely distributed in all the main nuclei of the basal
ganglia and their activation contributes to potentiate
excitatory transmission between the subthalamic nu-
cleus and the globus pallidus (see section VI.B.4), hence
opposing the effects of dopamine and facilitating the
activity of the indirect pathway. However, no selective
antagonist of mGlu1 receptors has so far been rigorously
tested in animal models of Parkinson’s disease. In par-
kinsonian animals, both mGlu1 and mGlu5 receptors
significantly increase the excitation of subthalamic and
SNr neurons (Marino et al., 2002). Although these find-
ings imply that the two receptor subtypes might have
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redundant roles in the basal ganglia of these animals, it
remains to be established whether blockade of mGlu1
receptor alone is sufficient to produce anti-parkinsonian
activity. If not, simultaneous blockade of both mGlu1
and mGlu5 receptors might be required for maximal
therapeutic activity. It is noteworthy that intrastriatal
administration of AIDA reverses haloperidol-induced
parkinsonian-like muscle rigidity and catalepsy and
normalizes the increased enkephalin mRNA expression
induced by haloperidol (Ossowska et al., 2002, 2003). In
the model of DA nerve cell degeneration induced by
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice,
the mGlu1 antagonist AIDA effectively protects DAergic
cells (Aguirre et al., 2001). 1-Methyl-4-phenyl-1,2,3,6-
tetrahydropyridine-treated monkeys show a marked de-
crease in mGlu1� expression in the surviving neurons of
the SNc ventral component and in the SNr (Kaneda et
al., 2003), further implicating this receptor in the sus-
ceptibility of DAergic neurons to parkinsonian insults.

A growing body of evidence suggests that mGlu1 re-
ceptor antagonists might protect striatal medium spiny
neurons against excitotoxic damage (for review, see
Conn et al., 2005). Selective loss of this neuronal popu-
lation occurs in Huntington’s disease, a progressive and
fatal disorder that is characterized by choreiform move-
ments and is caused by an expansion of a trinucleotide
CAG repeat in the gene that encodes the protein hun-
tingtin. Antagonists of mGlu1 receptors protect striatal
neurons against toxicity induced by NMDA or quinolinic
acid, an endogenous NMDA receptor agonist (Bruno et
al., 1999; Battaglia et al., 2001). A permissive role for
mGlu1 and/or mGlu5 receptors in NMDA toxicity could
explain why the integrity of the corticostriatal glutama-
tergic pathways is required for the induction of striatal
neuronal damage by quinolinic acid (Orlando et al.,
2001). mGlu1 receptor antagonists, but not mGlu5 re-
ceptor antagonists, protect striatal neurons by enhanc-
ing GABA release (Battaglia et al., 2001). One of the
features of Huntington’s disease is an impairment of
complex II of the mitochondrial respiratory chain (suc-
cinate dehydrogenase), which can be reproduced exper-
imentally using the mitochondrial toxins 3-NP or mal-
onic acid (Greene and Greenamyre, 1996). A link
between mitochondrial dysfunction and the excitotoxic
hypothesis of Huntington’s disease is supported by the
finding that 3-NP and methylmalonic acid induce a
pathological form of corticostriatal LTP, which is ex-
pressed as selective potentiation of synaptic responses
mediated by NMDA receptors. This pathological form of
synaptic potentiation might underlie long-term disrup-
tion of motor programs as well as the excitotoxic death of
medium spiny neurons (Gubellini et al., 2004). As op-
posed to induction of physiological LTP, induction of
3-NP-LTP requires the selective activation of mGlu1
receptors, which might act synergistically with D2 re-
ceptors to trigger events that include activation of the
MAPK pathway (Gubellini et al., 2004). These findings

suggest mGlu1 receptor antagonists as potential candi-
dates for the treatment of Huntington’s disease.

C. Fear and Anxiety

Antagonists of mGlu1 receptors have been proposed to
exhibit potential therapeutic effect in anxiety and stress
disorders. Intrahippocampal injection in rats of 4-car-
boxy-3-hydroxyphenylglycine, 4-CPG, CPCCOEt, AIDA,
and LY456236 evokes anxiolytic-like effects in the con-
flict drinking Vogel test (Chojnacka-Wójcik et al., 1997;
Tatarczynska et al., 2001; Kłodzińska et al., 2004; Varty
et al., 2006). Furthermore, in rats AIDA increases the
entries and time spent in open arms in the elevated
plus-maze test, a widely used model based on the ro-
dent’s natural aversion to height and open space, but
fails to exert anxiolytic-like activity in mice in the four-
plate test (Kłodzińska et al., 2004). The novel, selec-
tive, brain-permeable, and potent mGlu1 antagonist
JNJ16259685 confirmed the anxiolytic effect of mGlu1
inhibition in the Vogel test (Steckler et al., 2005). A
compound structurally related to JNJ16259685, namely
3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-
methanone methanesulfonate, although showing no ac-
tivity in the elevated plus-maze test in rats, significantly
inhibits fear-potentiated startle and attenuates freezing
responses in the contextual fear conditioning test (Pi-
etraszek et al., 2005; Gravius et al., 2006). In line with
these findings, mGlu1-deficient mice have impairments
in contextual fear conditioning (Aiba et al., 1994a).

These findings suggest that the anxiolytic activity
obtained by blocking mGlu1 receptors is task-specific.
Antagonism at mGlu1 seems efficacious, in terms of
anxiolytic activity, in tests involving a conflict compo-
nent, but not spontaneous exploration (Chojnacka-
Wójcik et al., 1997; Tatarczynska et al., 2001; Kłodziń-
ska et al., 2004; but see Pietraszek et al., 2005; Steckler
et al., 2005). The mechanisms through which mGlu1
antagonists exert anxiolytic activity are not known, but
it can be postulated that they involve the GABAergic
system in the limbic system. Blockade of mGlu1 recep-
tors may, therefore, have important therapeutic poten-
tial in the treatment of anxiety disorders.

D. Mood Disorders

In a recent study, Brody et al. (2003a) have investi-
gated the role of mGlu1 receptors in sensorimotor gat-
ing, measured by prepulse inhibition (PPI) of the startle
response. Sensorimotor gating is a fundamental form of
information processing that is deficient in patients with
schizophrenia and bipolar disorder (Braff et al., 1992;
Perry et al., 2001). Deficits in PPI have been observed in
a number of animal models of schizophrenia and mania
in both nonhuman primates and rodents (Dulawa and
Geyer, 1996; Linn and Javitt, 2001; Brody et al., 2003b,
2004). Mice with gene-targeted deletion of mGlu1 ex-
hibit a significant deficit of PPI, which is evident as
early as 6 weeks postnatally, and PPI remains impaired
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till adulthood (Brody et al., 2003a). Treatment with the
mood-stabilizing drug lamotrigine partially reverses the
PPI deficit in mGlu1 KO mice, whereas typical antipsy-
chotic drugs are ineffective (Brody et al., 2003a). This
study suggests that the modulation of sensorimotor gat-
ing by mGlu1 is consistent with a role of this receptor in
the treatment and/or etiology of bipolar disorders.

E. Excitotoxicity

Substantial evidence has accumulated to show that
mGlu1 receptors contribute somehow to the neurotoxic
effects of glutamate, also known as “excitotoxicity,” and
are implicated in the mechanisms that lead to neurode-
generation in models of cerebral ischemia. Activation of
mGlu1 receptors may exacerbate postischemic neuronal
injury through multiple noxious mechanisms, including
an increase in intracellular free Ca2� or the potentiation
of NMDA receptor responses. However, their actual role
in excitotoxicity remains controversial and seems to de-
pend on the particular experimental paradigm investi-
gated. Several new viewpoints on the neuroprotective
mechanisms of mGlu1 receptor antagonists have been
put forward. However, because of the very large and
complex body of literature on the topic and space limits,
we refer the reader to another dedicated review (Pelle-
grini-Giampietro, 2003). Only a topical study will be
discussed here because of its great impact on the field.
Baudry and coworkers found that activation of NMDA
receptors results in calpain-mediated truncation of the
C-terminal domain of the mGlu1� receptor at Ser936 (Xu
et al., 2007). The truncated mGlu1� receptor is no longer
able to activate the neuroprotective PI3-Akt signaling
pathway; hence, it facilitates the exacerbation of excito-
toxicity (Xu et al., 2007). Despite the obvious interest
that these findings generate, it is perhaps premature to
surmise that this positive feedback loop for excitotoxic-
ity is operating in neurodegenerative conditions in vivo.

F. Epilepsy and Seizures

Altered glutamatergic transmission is recognized as
one of the primary metabolic and pathological mecha-
nisms behind the etiology of several types of epilepsy
(Chapman et al., 1996). The role of ionotropic glutamate
receptor activation in the generation of epileptic dis-
charges has been extensively studied (Prince, 1999),
whereas the importance of the different classes of mGlu
receptors in the patterning of epileptiform activities is
only beginning to be recognized (for review, see Moldrich
et al., 2003; Wong et al., 2002).

Early reports have consistently shown antiepilepti-
form effects by nonselective mGlu receptor antagonists
(Thomsen et al., 1994c; Arvanov et al., 1995; Burke and
Hablitz, 1995; Merlin et al., 1995). On the other hand,
application of group I mGlu agonists in vitro elicits
synchronized oscillations and population bursting, re-
sembling interictal spikes in vivo, in hippocampal slices
(Merlin et al., 1995; Taylor et al., 1995). Moreover, if

epileptiform discharges were initiated by inhibition of
GABAA receptor-mediated inhibitory transmission, acti-
vation of group I mGlu receptors can further increase
the duration and the frequency of the bursts (Merlin et
al., 1995, 1998; Merlin and Wong, 1997; Rutecki and
Yang, 1997) independently of NMDA receptors (Galoyan
and Merlin, 2000). The potentiated bursts are shown to
persist for hours after washout of the agonist (Merlin
and Wong, 1997) and are reversibly shortened by appli-
cation of group I mGlu receptor antagonists (Merlin,
1999, 2002; Thuault et al., 2002). It is noteworthy that
Stoop et al. (2003) have shown, using both mGlu1- and
mGlu5-null mice and selective antagonists at these re-
ceptors, that the absence or block of either mGlu1 or
mGlu5 receptors is sufficient to lead to a total absence of
increase in bursting frequency in the hippocampal CA3
field caused by 3,5-DHPG. This total loss of sensitivity to
3,5-DHPG, resulting from the independent blockade of
either receptor, suggests the need for their simultaneous
activation (Stoop et al., 2003). Although in earlier re-
ports cooperation of mGlu1 and mGlu5 receptors in pro-
moting seizure-like activities had been anticipated, in
these preparations the effects of 3,5-DHPG were differ-
ent and only partially blocked by antagonists at mGlu1
or mGlu5 receptors (Merlin, 2002; Thuault et al., 2002;
Smolders et al., 2004). These studies also postulate dif-
ferent roles for the two group I mGlu receptors, in par-
ticular, that mGlu1 receptors would mainly sustain the
duration of prolonged synchronized discharges (Merlin,
2002; Thuault et al., 2002). Support for this hypothesis
comes from Wong and coworkers (Chuang et al., 2000,
2001, 2002), who have demonstrated using mGlu1-null
mice that in CA3 pyramidal cells mGlu1 distinctively
activates a PLC�1-dependent voltage-gated inward cur-
rent, which contributes significantly to sustaining the
prolonged rhythmic bursts (Chuang et al., 2001, 2002).
Moreover, synaptically activated mGlu1 receptors seem
to involve additional unidentified, but PLC�1-indepen-
dent, mechanisms to promote the lengthening of the
synchronized discharges (Lee et al., 2002).

Consistent with these findings in vitro, administra-
tion in vivo of group I mGlu receptor agonists has been
repeatedly found to be proconvulsant, independent of
whether they were injected focally in different brain
areas or in the cerebral ventricles (Tizzano et al., 1995;
Camón et al., 1998; Thomsen and Dalby, 1998). The
proconvulsant activity of group I mGlu receptors is
likely to result from a direct excitatory action dependent
on the opening of VSCCs (Schumacher et al., 2000) and
blockade of Ca2�-dependent and/or independent K�

channels. A requirement for tyrosine phosphorylation
and ERK1/2 activation for group I mGlu receptor-medi-
ated epileptiform discharges has also been reported
(Zhao et al., 2004).

Antagonism at mGlu1 receptors by means of AIDA or
LY367385 has anticonvulsant activity in the absence of
both epilepsy and generalized motor seizures (Chapman
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et al., 1999; Smolders et al., 2004). Experiments using
other competitive phenylglycine-like antagonists dem-
onstrate the potent anticonvulsant activity of these com-
pounds in models of 3,5-DHPG-induced limbic seizures
(Kingston et al., 2002). Likewise, a series of aminopyri-
dine derivatives with high selectivity for mGlu1 were
shown to be anticonvulsant in a number of mouse and
rat epilepsy models, including sound-induced seizures in
DBA/2 mice, mouse focal seizures, and amygdala kin-
dling (Shannon and Peters, 2002).

Intraperitoneal injections of kainic acid (KA) in young
rats lead to a prolonged seizure followed by chronic
recurrent seizures and long-term hippocampal dysfunc-
tion. Coadministration of AIDA with KA does not change
acute seizure-onset latency, seizure duration, or severity
(Renaud et al., 2002). However, AIDA prevents the oc-
currence of spontaneous recurrent seizures and loss of
CA1 oriens/alveus interneurons (Renaud et al., 2002).
Moreover, blockade of group I mGlu receptors limits the
loss of hippocampal function as a result of KA treatment,
as tested by the Morris water maze (Renaud et al.,
2002). With the amygdala kindling model, significant
suppression of the rate of seizure progression, but with
no effect on afterdischarge duration, was obtained by
intrahippocampal injection of mGlu1 antisense oligonu-
cleotides (Greenwood et al., 2000).

Activation of group I mGlu receptors, besides produc-
ing direct excitatory actions, also induces up-regulation
of both mRNA and protein of neuropeptide Y and of its
Y2 receptors in rat dentate granule cells (Smiałowska
and Bajkowska, 1997; Schwarzer and Sperk, 1998;
Schwarzer et al., 1998). Given the important role played
by neuropeptide Y in modulating glutamate release in
the hippocampus, regulation of the transcriptional ac-
tivity for this neuropeptide and for one of its receptors
mediated by group I mGlu receptors may serve as a
long-term feedback mechanism to control hippocampal
excitability.

In animal models of acquired epilepsy, several
changes in expression and function of group I mGlu
receptors and more specifically of mGlu1 receptors have
been described. However, the data seem highly contro-
versial, as different reports have described opposite reg-
ulation of mGlu1 receptor expression, sometimes using
the same animal model. Electrical kindling of the amyg-
dala was shown to produce, after the last seizure, a
transient up-regulation (24–48 h) of mGlu1 transcripts
and mGlu1� protein in the rat hippocampus (Akbar et
al., 1996; Blümcke et al., 2000), whereas a more pro-
longed increase lasting at least 1 month was observed in
the neocortex and supraoptic nucleus (Al-Ghoul et al.,
1998). In the rat KA model of temporal lobe epilepsy,
up-regulation of mGlu1 receptor mRNA expression in
the dentate gyrus was detected 30 days after KA injec-
tion (Blümcke et al., 2000). Increased immunoreactivity
for mGlu1� receptors in the dentate molecular layer was
also reported by the same group in kindled and KA-

treated rats as well as in surgical specimens from pa-
tients with temporal lobe epilepsy (Blümcke et al.,
2000). However, the pattern of immunolabeling de-
scribed in this article (intense immunoreactivity in the
CA1 neuropil) was largely inconsistent with the known
distribution of mGlu1� receptors in the hippocampus;
hence raising some doubts about the specificity of the
immunostaining. Ong et al. (1998) observed a reduction
in mGlu1� receptor immunoreactivity in the CA1 field
lasting from 1 to 5 days postinjection in KA-treated rats.
In the rat pilocarpine model, mGlu1 receptors were also
found to be markedly down-regulated in the hippocam-
pus between 3 and 31 days after pilocarpine-induced
status epilepticus (Tang et al., 2001). In the same pilo-
carpine model, although performed in mice, reduced ex-
pression of mGlu1 receptors was similarly detected in
the dentate gyrus of animals in the chronic recurrent
seizure stage (Chen et al., 2005).

High expression of mGlu1� receptors has been ob-
served in dysplastic neurons in the cortex of patients
with a pediatric form of intractable epilepsy known as
focal cortical dysplasia (Aronica et al., 2003). The in-
tense expression of this receptor in the dysplastic neu-
rons may result either from a constitutive or an induced
event associated with chronic seizure activity. These
findings raise questions about the contribution of the
high levels of mGlu1 receptors found in dysplastic neu-
rons to the intrinsic and high epileptogenicity of dysplas-
tic cortical regions. The lack of correlation between
mGlu1� receptor immunoreactivity in the dysplastic tis-
sue and duration of epilepsy, as well as the largely
similar expression of mGlu1� receptors in normal cortex
adjacent to dysplastic regions and control tissue from
patients with no history of epilepsy (Aronica et al.,
2003), speaks against a critical role of this receptor in
the dysplastic neurons for the generation of focal epilep-
tic discharges.

Despite a lack of conclusive evidence on the implica-
tions of mGlu1 transcriptional regulation in epilepto-
genesis, a large body of data clearly identifies a critical
role for mGlu1 receptors in the transition of interictal
bursting into ictal activity and maintenance of the pro-
longed synchronized discharges. Therefore, antagonists
at mGlu1 receptors may represent a new therapeutic
promise for the future treatment of epilepsy syndromes.

G. Pain

The involvement of group I mGlu receptors in nocicep-
tion has been an area of intense investigation. Intrathe-
cal administration of 3,5-DHPG induces spontaneous
nociceptive behaviors, prolonged mechanical allodynia,
and hyperalgesia in rodents (Fisher and Coderre, 1996,
1998). Also in sheep, intrathecal administration of low
doses of 3,5-DHPG increases the responsiveness to nox-
ious mechanical stimulation (mechanical hyperalgesia),
an effect that is reversed by the coadministration of
AIDA (Dolan and Nolan, 2000). The induction of spon-
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taneous nociceptive behaviors by 3,5-DHPG seems to
depend on glutamate release from primary afferent C-
fibers (Lefebvre et al., 2000; Lorrain et al., 2002). In
monkeys, capsaicin injection or 3,5-DHPG administra-
tion by microdialysis produces central sensitization of
spinothalamic tract cells and enhances responses to both
innocuous and noxious stimuli (Neugebauer et al.,
1999).

A critical step in establishing the important role of
mGlu1 receptors in pain has been obtained by antisense
knockdown, which by decreasing mGlu1 receptor ex-
pression inhibits spinal nociceptive transmission and
neuropathic hyperalgesia (Young et al., 1998; Fundytus
et al., 2001, 2002; Noda et al., 2003). It is noteworthy
that the use of mGlu1 antisense oligonucleotides also
revealed a role for mGlu1 in the development of toler-
ance to morphine, as the analgesic response to morphine
is conserved in antisense-treated neuropathic animals
(Fundytus et al., 2001; Sharif et al., 2002).

Intrathecal administration of selective antibodies
against mGlu1 receptors also effectively attenuates per-
sistent pain, chemical pain (formalin test), and neuro-
pathic pain (Fundytus et al., 1998). Likewise, antago-
nists of mGlu1 receptors significantly reduced chronic
hyperalgesia and allodynia in a number of experimental
models and species, corroborating the finding obtained
with antisense oligonucleotides and receptor-selective
antibodies. For example, in the model of chronic inflam-
mation produced by the application of complete Freund’s
adjuvant, intrathecal pretreatment with mGlu1 recep-
tor antagonists, such as CPCCOEt or A-841720, signif-
icantly reduces heat hyperalgesia and mechanical allo-
dynia (Guo et al., 2004; Morè et al., 2007). Pretreatment
with different classes of mGlu1 antagonists reduces no-
ciceptive responses in the formalin test, in the carra-
geenan test, and in the chronic constriction injury model
of inflammatory pain (Bhave et al., 2001; Zhang et al.,
2002; Micheli et al., 2003c; Varty et al., 2005; Sevos-
tianova and Danysz, 2006). However, when applied after
the induction of inflammation, only LY367385 and AIDA
seem to be slightly effective in reducing hyperalgesia
(Zhang et al., 2002). In the capsaicin-induced central
sensitization of spinothalamic tract neurons, pretreat-
ment with AIDA or CPCCOEt decreases thermal and/or
mechanical hypersensitivity in rats and primates
(Neugebauer et al., 1999; Soliman et al., 2005). There-
fore, mGlu1 receptor antagonists seem to produce anti-
allodynic and antihyperalgesic effects only in states of
hypersensitivity.

Activation of group I mGlu receptors enhances excit-
ability of spinal neurons and induces a long-lasting po-
tentiation of C-fiber-evoked potentials (Park et al.,
2004), which are mediated by a cooperative action of
mGlu1 and mGlu5 receptors (Park et al., 2004). Group I
mGlu receptor agonist-evoked responses are enhanced
in the spinal cord of hyperalgesic animals and are re-
versed by the administration of NMDA receptor antag-

onists (Boxall and Lancaster, 1998). NMDA currents in
dorsal horn neurons are potentiated by the activation of
group I mGlu receptors (Bleakman et al., 1992; Cerne
and Randic, 1992; Bond and Lodge, 1995). The iono-
tropic function of NMDA receptor in vivo is subject to
phosphorylation, which is initiated by mGlu/G-protein-
linked mechanisms during injury-induced spinal dorsal
horn plasticity (Guo et al., 2004). Inflammation and
mGlu agonists both increase NR2B phosphorylation
through similar mechanisms that require PKC, Ca2�

release, and Src activation (Guo et al., 2004). The likely
postsynaptic mGlu-NMDA receptor coupling seems to
occur mainly in the initiation phase of dorsal horn hy-
perexcitability, because post-treatment with CPCCOEt
does not attenuate hyperalgesia-allodynia (Guo et al.,
2004). A functional consequence of mGlu1 receptor acti-
vation after inflammation may be to prime NMDA re-
ceptors to further enhance hyperexcitability. This mech-
anism may be a critical initiator for central nociceptive
sensitization. A partially unresolved issue is whether
the facilitatory effect of mGlu1 receptors is entirely due
to their functional interaction with ionotropic receptors
(Boxall et al., 1996; Fisher and Coderre, 1996; Budai and
Larson, 1998) or involves other mechanisms to increase
neuronal excitability (Jones and Headley, 1995). Inflam-
mation leads to a long-lasting enhancement of behav-
ioral responses induced by the activation of group I
mGlu receptors [e.g., intrathecal injection of 3,5-DHPG
(Adwanikar et al., 2004)], which in turn induces ERK1/2
phosphorylation in dorsal horn neurons (Karim et al.,
2001; Adwanikar et al., 2004). Blockade of either mGlu1
or mGlu5 receptors reduces ERK1/2 activation and no-
ciceptive responses (Karim et al., 2001; Adwanikar et
al., 2004), suggesting that the ERK1/2 signaling path-
way is a potential mediator of mGlu1-dependent en-
hancement of nociception (Karim et al., 2001).

It can be concluded that strong anatomical, func-
tional, and behavioral evidence indicate a promising
therapeutic use of mGlu1 receptor antagonists and/or
allosteric modulators for the relief of neuropathic pain.

H. Role of Metabotropic Glutamate 1 Receptors
in Melanoma Development

mGlu1 signaling has been implicated in melanocytic
neoplasia (Pollock et al., 2003; Marín and Chen, 2004).
The mouse mutant line TG3, in which multiple tandem
insertions are present in the Grm1 locus with the con-
comitant deletion of 70 kb of intronic sequence, is highly
predisposed to develop melanoma. Strong mGlu1� re-
ceptor expression is also detected in melanomas deriving
from these mice, as well as in several human melanoma
biopsy samples and in melanoma cell lines, but not in
normal human or mouse melanocytes (Pollock et al.,
2003; Marín and Chen, 2004). Moreover, in a line of
transgenic mice with mGlu1� receptor expression tar-
geted to melanocytes, significant development of mela-
noma was observed (Pollock et al., 2003; Marín and
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Chen, 2004). These findings strongly suggest an involve-
ment of mGlu1 receptor signaling in the pathogenesis of
melanocytic neoplasia, including activation of ERK1/2
and PKC�, which have been implicated in melanoma
onset (Marín and Chen, 2004; Marín et al., 2006). Recent
findings further implicate mGlu1 receptors and gluta-
mate signaling in melanoma onset (Namkoong et al.,
2007). Human melanoma cells release high levels of
glutamate, which in turn induce mGlu1 receptor activa-
tion in an autocrine fashion (Namkoong et al., 2007).
Treatment of mGlu1-expressing melanoma cells with
specific antagonists, such as LY367385 and BAY36-
7620, or with the glutamate release inhibitor riluzole
reduces both extracellular glutamate levels and cell pro-
liferation (Namkoong et al., 2007). The involvement of
mGlu1 receptors in the development of melanoma pro-
vides a clear rational for targeting these receptors as
good candidates for melanoma therapy.

VIII. Perspectives and Directions
for Future Studies

The widespread but discrete distribution of mGlu1
receptors, their coupling to diverse intracellular signal-
ing pathways, and their important role in synaptic mod-
ulation underscore their potential relevance in the
pathophysiology of a wide range of neurological and
psychiatric disorders. However, almost 25 years from
their discovery and 15 years from the cloning of mGlu1
receptors, as yet no selective drugs for these receptors
are in clinical trials. Moreover, the current view on the
potential therapeutic role of mGlu1 receptors relies
solely on preclinical evidence. However, the recent de-
velopment of drugs that act as highly selective allosteric
modulators will probably foster their use in clinical stud-
ies and exploit their potential as therapeutic targets.
These compounds have great advantages over orthos-
teric ligands, as they do not require amino acid moieties
for their binding. In fact, most of these allosteric modu-
lators are neutral, lipophilic molecules with good brain
permeability.

mGlu1 receptor antagonists have clear analgesic, an-
tiepileptic, and anxiolytic potential; however, possible
impairments of learning and memory may reduce their
therapeutical promise for diseases of the central nervous
system. Even so, the recent implication of mGlu1 recep-
tor antagonists in the treatment of melanoma and per-
haps of irritable bowel syndrome warrant further efforts
for the development of bioavailable and safe drugs for
these receptors.
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Casabona G, Knöpfel T, Kuhn R, Gasparini F, Baumann P, Sortino MA, Copani A,
and Nicoletti F (1997) Expression and coupling to polyphosphoinositide hydrolysis
of group I metabotropic glutamate receptors in early postnatal and adult rat brain.
Eur J Neurosci 9:12–17.

Catania MV, Aronica E, Sortino MA, Canonico PL, and Nicoletti F (1990) Homolo-
gous desensitization of metabolotropic glutamate receptors in neuronal cultures.
Pharmacol Res 22 (Suppl 1):79–80.

Catania MV, Bellomo M, Di Giorgi-Gerevini V, Seminara G, Giuffrida R, Romeo R,
De Blasi A, and Nicoletti F (2001) Endogenous activation of group-I metabotropic
glutamate receptors is required for differentiation and survival of cerebellar Pur-
kinje cells. J Neurosci 21:7664–7673.

Cerne R and Randic M (1992) Modulation of AMPA and NMDA responses in rat
spinal dorsal horn neurons by trans-1-aminocyclopentane-1,3-dicarboxylic acid.
Neurosci Lett 144:180–184.

Chan WY, Soloviev MM, Ciruela F, and McIlhinney RA (2001) Molecular determi-
nants of metabotropic glutamate receptor 1B trafficking. Mol Cell Neurosci 17:
577–588.

Chapman AG, Elwes RD, Millan MH, Polkey CE, and Meldrum BS (1996) Role of
glutamate and aspartate in epileptogenesis; contribution of microdialysis studies
in animal and man. Epilepsy Res Suppl 12:239–246.

Chapman AG, Yip PK, Yap JS, Quinn LP, Tang E, Harris JR, and Meldrum BS
(1999) Anticonvulsant actions of LY 367385 ((�)-2-methyl-4-carboxyphenylgly-
cine) and AIDA ((RS)-1-aminoindan-1,5-dicarboxylic acid). Eur J Pharmacol 368:
17–24.

Chavis P, Ango F, Michel JM, Bockaert J, and Fagni L (1998) Modulation of big K�

572 FERRAGUTI ET AL.



channel activity by ryanodine receptors and L-type Ca2� channels in neurons. Eur
J Neurosci 10:2322–2327.

Chavis P, Fagni L, Bockaert J, and Lansman JB (1995) Modulation of calcium
channels by metabotropic glutamate receptors in cerebellar granule cells. Neuro-
pharmacology 34:929–937.

Chavis P, Fagni L, Lansman JB, and Bockaert J (1996) Functional coupling between
ryanodine receptors and L-type calcium channels in neurons. Nature 382:719–
722.

Chemin J, Girard C, Duprat F, Lesage F, Romey G, and Lazdunski M (2003)
Mechanisms underlying excitatory effects of group I metabotropic glutamate re-
ceptors via inhibition of 2P domain K� channels. EMBO J 22:5403–5411.

Chen J, Larionov S, Pitsch J, Hoerold N, Ullmann C, Elger CE, Schramm J, and
Becker AJ (2005) Expression analysis of metabotropic glutamate receptors I and
III in mouse strains with different susceptibility to experimental temporal lobe
epilepsy. Neurosci Lett 375:192–197.

Chinestra P, Aniksztejn L, Diabira D, and Ben-Ari Y (1993) (RS)-�-methyl-4-
carboxyphenylglycine neither prevents induction of LTP nor antagonizes metabo-
tropic glutamate receptors in CA1 hippocampal neurons. J Neurophysiol 70:2684–
2689.

Choi S and Lovinger DM (1996) Metabotropic glutamate receptor modulation of
voltage-gated Ca2� channels involves multiple receptor subtypes in cortical neu-
rons. J Neurosci 16:36–45.
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